
ADO.NET Entity Framework: Raising the Level of

Abstraction in Data Programming

Pablo Castro
Microsoft Corporation
One Microsoft Way

Redmond, WA, 98052, USA
pablo.castro@microsoft.com

Sergey Melnik
Microsoft Research
One Microsoft Way

Redmond, WA, 98052, USA
sergey.melnik@microsoft.com

Atul Adya
Microsoft Corporation
One Microsoft Way

Redmond, WA, 98052, USA
adya@microsoft.com

ABSTRACT

The ADO.NET Entity Framework provides a persistence layer for

.NET applications that allows developers to work at a higher level

of abstraction when interacting with data and data-access

interfaces. Developers can model and access their data using a

conceptual schema that is mapped to a relational database via a

flexible mapping. Interaction with the data can take place using a

SQL-based data manipulation language and iterator APIs, or

through an object-based domain model in the spirit of object-to-

relational mappers.

We demonstrate how the Entity Framework simplifies application

development using sample scenarios. We illustrate how the data is

modeled, queried and presented to the developer. We also show

how the provided data programming infrastructure can result in

easier-to-understand code by making its intent more explicit, as

well as how it can help with maintenance by adding a level of

indirection between the logical database schema and the

conceptual model that applications operate on.

Categories and Subject Descriptors:

H.2 [Database Management], D.3 [Programming Languages]

General Terms: Algorithms, Management, Design, Languages

Keywords: Data Programming, Conceptual Modeling, ADO.NET

1. INTRODUCTION
A large number of commercial software applications written today

are data-centric applications. Companies usually have several

database server systems managing their business and operational

information, and several applications built on top of them.

Application developers in IT departments and software

development companies face the challenge of creating and

evolving data-centric applications in a fast and cost-effective

manner.

Some of these challenges can be addressed with tools that offer

object-to-relational mapping (ORM) capabilities [4], although the

majority of these tools are focused primarily on binding relational

data to objects in specific programming languages and are not

well-suited for general-purpose database development.

The ADO.NET Entity Framework [1] is a technology designed to

elevate the level of abstraction at which application developers

work when creating and maintaining data-centric applications. To

achieve this goal, it focuses on three main areas: a) a higher-level

data model for applications to operate on, b) an object services

layer that exposes the application data through an object-oriented

interface and processes create/read/update/delete operations on

objects, and c) support for the language-integrated query (LINQ

[5]) mechanism in the upcoming version of C# and Visual Basic.

Today, most enterprise data is stored in relational databases. The

Entity Framework provides a flexible mechanism for mapping

higher-level application models to existing relational schemas. It

supports various persistence strategies and helps build new

applications on top of legacy databases. A prerelease of the Entity

Framework is available for download.

2. WHAT IS DEMONSTRATED
We demonstrate how the ADO.NET Entity Framework addresses

various real-world issues that application developers often

encounter when creating data-centric applications.

2.1 Working with a higher-level data model
In this section we demonstrate how a higher-level data model can

help express the application semantics more explicitly. We start

with the relational database schema shown in Figure 1.

Consider a hypothetical application that manages two kinds of

sales orders: online orders and those from retail stores. A

traditional way of discriminating the orders stored in a relational

table is by convention. For example, if TaxAmt is null then the

table row represents an online order. When the application wants

to list all the store sales orders, it can use code like this (in C# and

a previous version of ADO.NET):

void PrintOrders(DateTime date) {

 using(SqlConnection con = new

 SqlConnection(CONNSTRING_SQL)) {

 con.Open();

 SqlCommand cmd = con.CreateCommand();

 cmd.CommandText = @"

 SELECT o.OrderDate, o.TotalDue

 FROM SalesOrder AS o

 WHERE o.TaxAmt IS NOT NULL

 AND o.OrderDate > @date";

Copyright is held by the author/owner(s).

SIGMOD’07, June 11–14, 2007, Beijing, China.

ACM 978-1-59593-686-8/07/0006.

SalesOrder

TotalDue

TaxAmt

AccountNumber

OrderDate

ContactID

SalesOrderID

TotalDue

TaxAmt

AccountNumber

OrderDate

ContactID

SalesOrderID

HireDate

Title

EmailAddress

LastName

FirstName

ContactID

HireDate

Title

EmailAddress

LastName

FirstName

ContactID

Contact

FK

Figure 1: Sample relational schema

 cmd.Parameters.AddWithValue("date",

 date);

 DbDataReader r = cmd.ExecuteReader(

 CommandBehavior.SequentialAccess);

 while(r.Read())

 Console.WriteLine("{0:d}:\t{1}",

 r["OrderDate"], r["TotalDue"]);

 }

}

While the SQL query shown above is relatively simple, its

semantics is not obvious. Specifically, “o.TaxAmt IS NOT

NULL” actually means “a store sales order”; that meaning needs

to be documented externally as it cannot be derived from the

query without the appropriate context.

The ADO.NET Entity Framework operates on a higher-level

entity-relationship model called the Entity Data Model

(EDM) [3], where Entities are a first-class concept of the system.

An entity in EDM is a structure with a key. It can surface in

various ways in the programming model (objects, rows/columns,

etc.). Entities are instances of Entity Types, and are contained in

Entity Sets (somewhat analogous to tables). Entity Types can be

derived from other Entity Types enabling structural inheritance.

EDM also has an explicit concept of an Association that goes

beyond a foreign key constraint in relational schemas and can be

used to navigate between entities in queries and in other contexts.

One possible representation of the relational sales data in EDM

terms is shown in Figure 2. The EDM schema contains roughly

the same elements as the relational schema shown in Figure 1, but

uses inheritance to model SalesOrders in general and

StoreSalesOrders as a subtype. The EDM schema also introduces

an association between SalesOrder and Contact. The SalesDB

element shown in Figure 2 represents the container for the entity

sets Contacts (which contains instances of Contact) and

SalesOrders (which contains instances of SalesOrder and its

subtype StoreSalesOrder).

In addition to the EDM schema, the system needs information that

describes how the various elements of the EDM schema map to

the underlying relational database that contains the data. That is

done through a mapping specification. The mapping is specified

using an XML file that can be authored by hand or using a visual

tool, such as the one described in [2], and is compiled into data

transformations that drive query and update processing [6].

For this example, we define a mapping specification that maps

contacts using a trivial 1:1 mapping. It maps sales orders using a

discriminating condition that tells the system that those rows with

a null value in TaxAmt should be mapped to instances of the

SalesOrder type, and the rest to instances of the StoreSalesOrder

type.

Now the developer can target the conceptual model in the

application. One way of incrementally adopting this model while

leveraging the coding patterns established in previous versions of

ADO.NET is by using the EntityClient provider, an ADO.NET

data-access provider that operates at the conceptual level and uses

Entity SQL (a SQL dialect) as its query language. For example (in

C# along with the ADO.NET Entity Framework):

void PrintOrders(DateTime date) {

 using(EntityConnection con = new

 EntityConnection(CONNSTRING_EDM)) {

 con.Open();

 EntityCommand cmd = con.CreateCommand();

 cmd.CommandText = @"

 SELECT o.OrderDate, o.TotalDue

 FROM Sales.SalesDB.SalesOrders AS o

 WHERE o IS OF (Sales.StoreSalesOrder)

 AND o.OrderDate > @date";

 cmd.Parameters.AddWithValue("date",

 date);

 DbDataReader r = cmd.ExecuteReader(

 CommandBehavior.SequentialAccess);

 while(r.Read())

 Console.WriteLine("{0:d}:\t{1}",

 r["OrderDate"], r["TotalDue"]);

 }

}

Note that the usage pattern for the new API is identical to that of

previous releases, helping with the learning curve. Also, the

developer’s intent can now be clearly understood from the

formulation of the query; specifically, the query asks for sales

orders o such that “o IS OF (Sales.StoreSalesOrder)”, i.e., for

orders that are instances of the StoreSalesOrder entity type.

2.2 Isolation from schema changes
Here we demonstrate how having a rich mapping layer between

the application’s conceptual model and the database schema

introduces a new level of data independence and helps with

schema evolution in certain scenarios.

While some ORMs can already do this to varying degrees, they

focus on mapping to objects; in contrast, the Entity Framework

provides a general mechanism that can be used regardless of the

choice of data access interface.

We present an example of database refactoring that affects the

schema in a way that would break a traditional database

application, and show how the mapping infrastructure can help

avoid a code change in the application.

Suppose that the Contact table was a very large table and had a

large number of contacts, not all of them sales people; in order to

increase the row density in the contacts table and reduce the disk

I/O for certain workloads, the database administrator decides to

SalesOrder

TotalDue

AccountNumber

OrderDate

SalesOrderID

TotalDue

AccountNumber

OrderDate

SalesOrderID

HireDate

Title

EmailAddress

LastName

FirstName

ContactID

HireDate

Title

EmailAddress

LastName

FirstName

ContactID

Contact

StoreSalesOrder

TaxAmtTaxAmt

0..1

1

SalesOrders

Contacts

SalesDB

Figure 2: Sample EDM schema

vertically partition the table by adding a new table SalesPerson

with a foreign key into Contact, which preserves the existing keys.

An application using the EDM schema shown in Figure 2 can use

the following query to find the names of the sales people hired

after a given date, regardless of how they are mapped to the

underlying tables:

SELECT c.FirstName, c.LastName

FROM Sales.SalesDB.Contact AS c

WHERE c.HireDate > @date

After the database refactoring the developer has to adjust the

mapping specification to tell the system that now the Contact

entities are created by joining the Contact and SalesPerson tables

and extracting the desired properties from these tables.

Note that the conceptual schema and the application code

(including queries) were not affected at all by this change. The

system will exploit the new mapping to query and update the

refactored tables. No database views or triggers need to be created

or modified.

2.3 Presenting data as objects
The examples shown in Sections 2.1 and 2.2 execute queries

against the conceptual model and return values as rows and

columns using the DataReader API construct. We now discuss

how to use .NET objects instead of rows and columns to represent

entities.

The ADO.NET Entity Framework provides an Object Services

layer, which enables developers to use regular .NET objects to

interact with the data, both for retrieval and updates. The tools

included with the Entity Framework automatically generate .NET

classes to represent each declared Entity Type.

There are many options for incrementally layering the object

services on top of the EntityClient provider; in the interest of

brevity, we show here the simplest option where EntityClient is

used internally and is set up automatically by the system. To

follow the running example, the code excerpt below is equivalent

to the one used in Section 2.1 and obtains sales orders that were

posted via a retail store after a certain date:

void PrintOrders(DateTime date) {

 using(SalesDB db = new SalesDB()) {

 ObjectQuery<SalesOrder> orders =

 db.CreateQuery<SalesOrder>(@"

 SELECT VALUE o

 FROM Sales.SalesDB.SalesOrders AS o

 WHERE o IS OF (Sales.StoreSalesOrder)

 AND o.OrderDate > @date",

 new ObjectParameter("date", date));

 foreach(SalesOrder o in orders)

 Console.WriteLine("{0:d}:\t{1}",

 o.OrderDate, o.TotalDue);

 }

}

The “VALUE” keyword in the select clause eliminates the row-

wrapper that otherwise would be generated by the system if we

simply had “o” in the projection list.

While this version of the code has identical functionality to the

earlier one, the actual code has significantly fewer database-

specific constructs; it does not explicitly create and initialize a

connection, nor does it need configuration information inside the

program. All of this information is captured during code

generation and stored in external configuration files. Also, the

query results are .NET objects and not rows and columns.

2.4 Language-integrated query
Most current data-access libraries used in commercial applications

expect SQL queries as strings. Having SQL queries be represented

as strings means that the compiler cannot help the developer with

compile-time checking of syntactic and semantic correctness like

it does for the rest of the program.

Language-integrated query [5], or LINQ for short, is an

innovation in the programming languages space that introduces

query-related constructs to mainstream programming languages

such as C# and Visual Basic. The query constructs are not

processed by an external tool but instead are first-class type-

checked expressions of the language itself.

The ADO.NET Entity Framework is fully integrated with LINQ.

Developers can formulate queries against the conceptual model

using the language constructs for writing queries. For example:

void PrintOrders(DateTime date) {

 using(SalesDB db = new SalesDB()) {

 var orders = from o in db.SalesOrders

 where o is StoreSalesOrder

 && o.OrderDate > date

 select o;

 foreach(SalesOrder o in orders)

 Console.WriteLine("{0:d}:\t{1}",

 o.OrderDate, o.TotalDue);

 }

}

In this example the query is expressed using the constructs of the

C# language so the compiler can verify the syntax and the

semantic correctness of the query during compilation.

3. ACKNOWLEDGEMENTS
We are grateful to the dozens of engineers on the ADO.NET team

who helped build the technology that we demonstrate here.

4. REFERENCES
[1] A. Adya, J. A. Blakeley, S. Melnik, S. Muralidhar, and the

ADO.NET Team. Anatomy of the ADO.NET Entity

Framework. In SIGMOD, 2007

[2] P. A. Bernstein, S. Melnik, J. E. Churchill. Incremental

Schema Matching. In VLDB, 2006

[3] J. A. Blakeley, S. Muralidhar, A. Nori. The ADO.NET Entity

Framework: Making the Conceptual Level Real. In ER, 2006

[4] W. R. Cook, A. H. Ibrahim. Integrating Programming

Languages and Databases: What is the Problem?

ODBMS.ORG, Expert Article, Sept. 2006

[5] E. Meijer, B. Beckman, G. M. Bierman. LINQ: Reconciling

Objects, Relations and XML in the .NET Framework. In

SIGMOD, 2006

[6] S. Melnik, A. Adya, P. A. Bernstein. Compiling Mappings to

Bridge Applications and Databases. In SIGMOD, 2007

