
Compiling Mappings to Bridge Applications and Databases

Sergey Melnik
Microsoft Research
One Microsoft Way

Redmond, WA 98052, U.S.A.
melnik@microsoft.com

Atul Adya
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052, U.S.A.

adya@microsoft.com

Philip A. Bernstein
Microsoft Research
One Microsoft Way

Redmond, WA 98052, U.S.A.
philbe@microsoft.com

ABSTRACT
Translating data and data access operations between applications
and databases is a longstanding data management problem. We
present a novel approach to this problem, in which the relationship
between the application data and the persistent storage is specified
using a declarative mapping, which is compiled into bidirectional
views that drive the data transformation engine. Expressing the ap-
plication model as a view on the database is used to answer queries,
while viewing the database in terms of the application model al-
lows us to leverage view maintenance algorithms for update trans-
lation. This approach has been implemented in a commercial prod-
uct. It enables developers to interact with a relational database via
a conceptual schema and an object-oriented programming surface.
We outline the implemented system and focus on the challenges of
mapping compilation, which include rewriting queries under con-
straints and supporting non-relational constructs.

Categories and Subject Descriptors:
H.2 [Database Management], D.3 [Programming Languages]

General Terms: Algorithms, Performance, Design, Languages

Keywords: mapping, updateable views, query rewriting

1. INTRODUCTION
Developers of data-centric solutions routinely face situations in
which the data representation used by an application differs sub-
stantially from the one used by the database. The traditional rea-
son is the impedance mismatch between programming language
abstractions and persistent storage [12]: developers want to encap-
sulate business logic into objects, yet most enterprise data is stored
in relational database systems. A second reason is to enable data in-
dependence. Even if applications and databases start with the same
data representation, they can evolve, leading to differing data rep-
resentations that must be bridged. A third reason is independence
from DBMS vendors: many enterprise applications run in the mid-
dle tier and need to support backend database systems of varying
capabilities, which require different data representations. Thus, in
many enterprise systems the separation between application mod-
els and database models has become a design choice rather than a
technical impediment.

The data transformations required to bridge applications and
databases can be very complex. Even relatively simple object-to-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

relational (O/R) mapping scenarios where a set of objects is par-
titioned across several relational tables may require transforma-
tions that contain outer joins, nested queries, and case statements
in order to reassemble objects from tables (we will see an example
shortly). Implementing such transformations is difficult, especially
since the data usually needs to be updatable, a common require-
ment for many enterprise applications. A study referred to in [22]
found that coding and configuring O/R data access accounts for up
to 40% of total project effort.

Since the mid 1990’s, client-side data mapping layers have be-
come a popular alternative to handcoding the data access logic, fu-
eled by the growth of Internet applications. A core function of such
a layer is to provide an updatable view that exposes a data model
closely aligned with the application’s data model, driven by an ex-
plicit mapping. Many commercial products (e.g., Oracle TopLink)
and open source projects (e.g., Hibernate) have emerged to offer
these capabilities. Virtually every enterprise framework provides
a client-side persistence layer (e.g., EJB in J2EE). Most packaged
business applications, such as ERP and CRM applications, incor-
porate proprietary data access interfaces (e.g., BAPI in SAP R/3).

Today’s client-side mapping layers offer widely varying degrees
of capability, robustness, and total cost of ownership. Typically,
the mapping between the application and database artifacts is rep-
resented as a custom structure or schema annotations that have
vague semantics and drive case-by-case reasoning. A scenario-
driven implementation limits the range of supported mappings and
often yields a fragile runtime that is difficult to extend. Few data
access solutions leverage data transformation techniques developed
by the database community. Furthermore, building such solutions
using views, triggers, and stored procedures is problematic for a
number of reasons. First, views containing joins or unions are usu-
ally not updatable. Second, defining custom database views and
triggers for every application accessing mission-critical enterprise
data is rarely acceptable due to security and manageability risks.
Moreover, SQL dialects, object-relational features, and procedural
extensions vary significantly from one DBMS to the next.

In this paper we describe an approach to building a mapping-
driven data access layer that addresses some of these challenges.

As a first contribution, we present a novel mapping architecture
that provides a general-purpose mechanism for supporting updat-
able views. It enables building client-side data access layers in a
principled way but could also be exploited inside a database en-
gine. The architecture is based on three main steps:

• Specification: Mappings are specified using a declarative
language that has well-defined semantics and puts a wide
range of mapping scenarios within reach of non-expert users.

• Compilation: Mappings are compiled into bidirectional
views, called query and update views, that drive query and
update processing in the runtime engine.

1. Data manipulation
using Entity SQL

3. Language-integrated
queries (LINQ)

2. CRUD on objects
(create/read/
update/delete)

"SELECT p
FROM SalesPeople AS p
WHERE p.Hired.Year > 2000"

var people = from p in aw.SalesPeople
where p.Hired.Year > 2000
select p;

foreach(Person p in aw.SalesPeople)
if(p.Hired.Year > 2000) {...}

aw.SaveChanges();

Figure 1: Interacting with data in the Entity Framework

• Execution: Update translation is done using algorithms for
materialized view maintenance. Query translation uses view
unfolding.

To the best of our knowledge, this mapping approach has not
been exploited previously in the research literature or in commer-
cial products. It raises interesting research challenges.

Our second contribution addresses one of these challenges—
formulation of the mapping compilation problem and algorithms
that solve it. The algorithms that we developed are based on tech-
niques for answering queries using views and incorporate a number
of novel aspects. One is the concept of bipartite mappings, which
are mappings that can be expressed as a composition of a view and
an inverse view. Using bipartite mappings enables us to focus on
either left or right ‘part’ of mapping constraints at a time when gen-
erating query and update views. Another novel aspect is a schema
partitioning approach that allows us to rewrite the mapping con-
straints using union queries and facilitates view generation. Fur-
thermore, we discuss support for object-oriented constructs, case
statement generation, bookkeeping of tuple provenance, and sim-
plification of views under constraints.

The presented approach has been implemented in a commercial
product, the Microsoft ADO.NET Entity Framework [1, 11]. A
pre-release of the product is available for download.

This paper is structured as follows. In Section 2 we give an
overview of the Entity Framework. In Section 3 we outline our
mapping approach and illustrate it using a motivating example. The
mapping compilation problem is stated formally in Section 4. The
implemented algorithms are presented in Section 5. Experimental
results are in Section 6. Related work is discussed in Section 7.
Section 8 is the conclusion.

2. SYSTEM OVERVIEW
The ADO.NET Entity Framework provides a mapping-driven data
access layer for developers of data-intensive applications. It com-
prises an extended entity-relationship data model, called EDM, and
a set of design-time and run-time services. The services allow de-
velopers to describe the application data using an entity schema and
interact with it at a high level of abstraction that is appropriate for
business applications.

The system offers three major data programming facilities (see
Figure 1). First, developers can manipulate the data represented
in the entity schema using Entity SQL, an extension of SQL that
can deal with inheritance, associations, etc. This capability en-
ables general-purpose database development against the concep-
tual schema and is important for applications that do not need
an object layer, such as business reporting. Second, the entity
schema can be used to generate object-oriented interfaces in sev-
eral major programming languages. In this way, persistent data can
be accessed using create/read/update/delete operations on objects.
Third, queries against the generated object model can be posed us-
ing a language-integrated query mechanism (LINQ [26]), which
enables compile-time checking of queries.

Mapping

Query pipeline Update pipeline

Mapping compiler

Assemble
entities

Object services

Apply view
maintenance to

bidirectional views

Language integration

R
un

tim
e

D
es

ig
n

tim
e

Data providers

• Unfold query views
• Push relational ops
• Optimize

∆Entities

∆Tables

Entity SQL

Expression trees

Entities

Tuples

UsersApplications Tools

Database system

API
generator

UI Tools
Query
views

Update
views

Merge views

Figure 2: System architecture

EDM is an extended entity-relationship model. It distinguishes
entity types, complex types, and primitive types. Instances of en-
tity types, called entities, can be organized into persistent collec-
tions called entity sets. An entity set of type T holds entities of
type T or any type that derives from T . Each entity type has a key,
which uniquely identifies an entity in the entity set. Entities and
complex values may have properties holding other complex values
or primitive values. Like entity types, complex types can be spe-
cialized through inheritance. However, complex values can exist
only as part of some entity. Entities can participate in 1:1, 1:n, or
m:n associations, which essentially relate the keys of the respec-
tive entities. Notice that a relational schema with key and foreign
key constraints can be viewed as a simple EDM schema that con-
tains a distinct entity set and entity type for each relational table.
We exploit this property to uniformly specify and manipulate map-
pings. Henceforth we use the general term extent to refer to entity
sets, associations, and tables.

Entity SQL is a data manipulation language based on SQL. En-
tity SQL allows retrieving entities from entity sets and navigating
from an entity to a collection of entities reachable via a given asso-
ciation. Path expressions can be used to ‘dot’ into complex values.
Type interrogation can be done using 〈value〉 IS OF 〈type〉 or IS
OF ONLY predicates. Entity SQL allows instantiating new entities
or complex values similarly to the ‘new’ construct in programming
languages. It supports a tuple constructor that produces row types
and uses reference types similarly to SQL99. The semantics of En-
tity SQL statements used in the paper is explained where necessary.

The system architecture is depicted (abridged) in Figure 2. It
comprises several major components: query and update pipelines,
object services, mapping compiler, metadata services (not shown),
data providers, and others. The shaded components are discussed
in more detail in subsequent sections. All data access requests go
through a data transformation runtime, which translates data and
data access operations using a mapping between the entity schema
and the relational schema. The translated data access operations are
fed into a data provider, one for each supported database system,
which turns them into expressions in a specific SQL dialect.

3. MAPPING APPROACH
In this section we present the three main steps of our approach:
specifying a mapping as a set of constraints, compiling a mapping
into bidirectional views, and using view maintenance algorithms to
perform update translation.

Customer
CreditScore

Customer
CreditScore

Person
Id
Name

Person
Id
Name

ClientInfo
Id
Name

ClientInfo
Id
Name

CreditInfo
Id
Score

CreditInfo
Id
Score

SELECT p.Id, p.Name
FROM Persons p

SELECT Id, Name
FROM ClientInfo

=

SELECT c.Id, c.CreditScore
FROM Persons c
WHERE c IS OF Customer

SELECT Id, Score
FROM CreditInfo=

Persons:
Set<Person>

Customer
CreditScore

Customer
CreditScore

Person
Id
Name

Person
Id
Name

ClientInfo
Id
Name

ClientInfo
Id
Name

CreditInfo
Id
Score

CreditInfo
Id
Score

SELECT p.Id, p.Name
FROM Persons p

SELECT Id, Name
FROM ClientInfo

=

SELECT c.Id, c.CreditScore
FROM Persons c
WHERE c IS OF Customer

SELECT Id, Score
FROM CreditInfo=

Persons:
Set<Person>

Figure 3: Mapping between entities (left) and tables (right)

Mappings. A mapping is specified using a set of mapping frag-
ments. Each mapping fragment is a constraint of the form QEntities

= QTables where QEntities is a query over the entity schema (on the
client side) and QTables is a query over the database schema (on
the relational store side). A mapping fragment describes how a
portion of entity data corresponds to a portion of relational data.
In contrast to a view, a mapping fragment does not need to specify
a complete transformation that assembles an entity set from tables
or vice versa. A mapping can be defined using an XML file or a
graphical tool.

To illustrate, consider the sample mapping scenario in Figure 3.
It depicts an entity schema with entity types Person and Customer
whose instances are accessed via the extent Persons. On the store
side there are two tables, ClientInfo and CreditInfo, which represent a
vertical partitioning of the entity data. The mapping is given by two
fragments shown in Figure 3, and is visualized using lines between
schema elements. The first fragment specifies that the set of (Id,
Name) values for all entities in Persons is identical to the set of
(Id, Name) values retrieved from the ClientInfo table. Similarly,
the second fragment tells us that (Id, CreditScore) values for all
Customer entities can be obtained from the CreditInfo table.

Bidirectional views. The mapping compiler (see Figure 2)
takes a mapping as input and produces bidirectional views that
drive the data transformation runtime. These views are specified in
Entity SQL. Query views express entities in terms of tables, while
update views express tables in terms of entities. Update views may
be somewhat counterintuitive because they specify persistent data
in terms of virtual constructs, but as we show later, they can be
leveraged for supporting updates in an elegant way. The generated
views respect the mapping in a sense that will be defined shortly
and have the following properties (simplified here and elaborated
in subsequent sections):

• Entities = QueryViews(Tables)

• Tables = UpdateViews(Entities)

• Entities = QueryViews(UpdateViews(Entities))

The last condition, called the roundtripping criterion, ensures
that all entity data can be persisted and reassembled from the data-
base in a lossless fashion. The mapping compiler included in the
Entity Framework guarantees that the generated views satisfy the
roundtripping criterion. It raises an error if no such views can be
produced from the input mapping.

Figure 4 shows the query and update views generated by the
mapping compiler for the mapping in Figure 3. In general, the
views are significantly more complex than the input mapping, as
they explicitly specify the required data transformations. For exam-
ple, to reassemble the Persons extent from the relational tables, one
needs to perform a left outer join between ClientInfo and CreditInfo

Persons =
SELECT

CASE WHEN T2.from2
THEN Customer(T1.Id, T1.Name, T2.CreditScore)
ELSE Person(T1.Id, T1.Name) END

FROM ClientInfo AS T1
LEFT OUTER JOIN (

SELECT Id, Score AS CreditScore,
True AS from2

FROM CreditInfo) AS T2
ON T1.Id = T2.Id

ClientInfo = SELECT p.Id, p.Name
FROM Persons p

CreditInfo = SELECT c.Id, c.CreditScore
FROM Persons c
WHERE c IS OF Customer

Query
view

Update
views

Persons =
SELECT

CASE WHEN T2.from2
THEN Customer(T1.Id, T1.Name, T2.CreditScore)
ELSE Person(T1.Id, T1.Name) END

FROM ClientInfo AS T1
LEFT OUTER JOIN (

SELECT Id, Score AS CreditScore,
True AS from2

FROM CreditInfo) AS T2
ON T1.Id = T2.Id

ClientInfo = SELECT p.Id, p.Name
FROM Persons p

CreditInfo = SELECT c.Id, c.CreditScore
FROM Persons c
WHERE c IS OF Customer

Query
view

Update
views

Figure 4: Bidirectional views compiled from mapping in Figure 3

tables, and instantiate either Customer or Person entities depending
on whether or not the respective tuples from CreditInfo participate
in the join. In the query pipeline (Figure 2), queries against the
entity schema can now be answered by unfolding the query views
in the queries, pulling up all non-relational constructs, and sending
the relational-only portion of the query to the database server.

Update translation. A key insight exploited in our mapping
architecture is that view maintenance algorithms can be leveraged
to propagate updates through bidirectional views. This process is
illustrated in Figure 5. Tables hold persistent data. Entities rep-
resent a virtual state, only a tiny fraction of which is materialized
on the client. The goal is to translate an update ΔEntities on the
virtual state of Entities into an update ΔTables on the persistent
state of Tables. This can be done using the following two steps (we
postpone the discussion of merge views shown in the figure):

1. View maintenance:
ΔTables = ΔUpdateViews (Entities, ΔEntities)

2. View unfolding:
ΔTables = ΔUpdateViews (QueryViews(Tables), ΔEntities)

Step 1 applies view maintenance algorithms to update views.
This produces a set of delta expressions, ΔUpdateViews, which
tell us how to obtain ΔTables from ΔEntities and a snapshot of
Entities. Since the latter is not fully materialized on the client,
Step 2 uses view unfolding to substitute Entities by query views
in the computed delta expressions. Together, these steps give us
an expression that takes as input the initial persistent database state
and the update to entities, and computes the update to the database.

This approach yields a clean, uniform algorithm that works for
both object-at-a-time and set-based updates (i.e., those expressed
using data manipulation statements). In practice, Step 1 is often
sufficient for update translation since many updates do not directly
depend on the current database state; an example is given below. In
those situations we have ΔTables = ΔUpdateViews(ΔEntities).

To illustrate, consider the update views in Figure 4. These views
are very simple, so applying view maintenance rules is straightfor-
ward. For insertions we obtain the ΔUpdateViews expressions as:

ΔClientInfo = SELECT p.Id, p.Name FROM ΔPersons p
ΔCreditInfo = SELECT c.Id, c.CreditScore FROM ΔPersons c

WHERE c IS OF Customer

So, for inserted entity ΔPersons = {〈Customer(1, ’Alice’,
700)〉}, we compute row insertions ΔClientInfo = {〈1, ’Alice’〉},
ΔCreditInfo = {〈1, 700〉}. In general, update views can get much
more complex. Using view maintenance techniques allows sup-
porting a very large class of updates. It accounts in a uniform way

∆Tables ?

∆EntitiesEntities

Query views Update views

Tables
sold

snew

Merge
viewssupd

Entities
∆Entities+

Tables
∆Tables+∆Tables ?

∆EntitiesEntities

Query views Update views

Tables
sold

snew

Merge
viewssupd

Entities
∆Entities+Entities
∆Entities+

Tables
∆Tables+

Figure 5: Update translation

for tricky update translations where multiple extents are updated, a
deletion from an extent becomes an update in the store, etc.

4. MAPPING COMPILATION PROBLEM
In this section we state the mapping compilation problem formally.
We start with a basic problem statement and refine it after intro-
ducing merge views. After that we describe the mapping language
supported by the mapping compiler.

Since the data transformation runtime is driven by query and up-
date views, one might wonder why a mapping is needed. We con-
sidered several alternatives before settling on the mapping compi-
lation approach. One alternative is to let the developers supply both
query and update views. This is problematic because checking the
roundtripping criterion for Entity SQL views is undecidable. To
see this, consider a trivial query view E = R and an update view
R = E − (Q1 − Q2) where E is an entity set, R is a relational
table, and Q1 and Q2 are queries on the entity schema that do not
mention E. Unfolding the update view yields the roundtripping
condition E = E − (Q1 − Q2). It holds if and only if Q1 ⊆ Q2,
which is undecidable for any relationally complete language [14].
Although it is possible to restrict the query and update views to a
subset of Entity SQL for which containment is decidable, writing
them by hand is hard and requires significant database expertise.

Another alternative is to obtain query views from update views.
This requires testing the injectivity of update views and inverting
them, which is also undecidable for Entity SQL, as can be seen
using the construction in the paragraph above. A third alternative
is to obtain update views from query views. This requires solving
the view update problem. As was shown in [13], finding a unique
update translation for even quite simple (query) views is rarely pos-
sible.

Therefore, we follow the mapping compilation approach, where
query and update views are generated from mappings and are guar-
anteed to roundtrip. Currently, the Entity Framework only accepts
the views produced by the built-in mapping compiler.

4.1 Mappings and data roundtripping
We start with a general problem statement that makes no assump-
tions about the languages used for specifying schemas, mappings,
and views. To emphasize that, we refer to the entity schema as a
‘client’ schema and to the relational schema as a ‘store’ schema.

A schema defines a set of states (also called instances). Let C be
the set of valid client states, i.e., all instances satisfying the client
schema and all its schema constraints. Similarly, let S be the set
of valid store states, i.e., those conforming to the store schema.
Occasionally we use the same symbol (C, S , etc.) to denote the
schema itself, when its role is clear from the context.

A mapping between the client and store schema specifies a bi-
nary relation between C states and S states. Set Σmap of mapping
constraints expressed in some formal language defines the mapping
map = {(c, s) | c ∈ C, s ∈ S , (c, s) |= Σmap} consisting of all
states (c, s) that satisfy every constraint in Σmap. We say that map
is given by Σmap. A view is a total functional mapping that maps
each instance of a given schema to an instance of a result schema.

The first question that we address is under what conditions a
mapping map ⊆ C×S describes a valid data access scenario. The
job of the mapping layer is to enable the developer to run queries
and updates on the client schema as if it were a regular database
schema. That is, the mapping must ensure that each database state
of C can be losslessly encoded in S . Hence, each state of C must
be mapped to a distinct database state of S , or to a set of database
states of S that is disjoint from any other such set. If this condition
is satisfied we say that the mapping roundtrips data, denoted as

map ◦ map−1 = Id(C)

i.e., the composition1 of the mapping with its inverse yields the
identity mapping on C. Notice that map may be non-functional. As
an example, consider a mapping just like the one in Figure 3 except
that CreditInfo table has an extra column Date. This column is not
referenced in the mapping constraints. Hence, the client schema
provides access to a proper subset of the data in the store, i.e., there
exist multiple corresponding store states for each client state.

The next question we consider is what it means to obtain query
and update views that roundtrip data and respect the mapping. Our
statement of this problem is based on the following theorem:

THEOREM 1 (DATA ROUNDTRIPPING) Let map ⊆ C × S . Then,
map ◦map−1 = Id(C) if and only if there exist two (total) views,
q : S → C and u : C → S , such that u ⊆ map ⊆ q−1.

If the views u and q above are given as sets of constraints (or
view definitions) Σu and Σq , then u ⊆ map ⊆ q−1 means that Σu

implies Σmap, which in turn implies Σq for all instances in C×S . It
is easy to show that for each q and u satisfying the above theorem
u ◦ q = Id(C), called the roundtripping criterion in Section 3.
Hence, we formulate the following data roundtripping problem:

For a given map ⊆ C × S , construct views q and u
expressed in some language L, such that u ⊆ map ⊆
q−1, or show that such views do not exist.

We refer to q and u as the query view and update view, respec-
tively. Sometimes, we use the plural form ‘views’ to emphasize
that q and u are specified as sets of view definitions (e.g., as shown
in Figure 4).

4.2 Merge views
In typical mapping scenarios, only part of the store data is acces-
sible through the client schema. Some tables or columns, such as
CreditInfo.Date mentioned above, may not be relevant to the appli-
cation and not exposed through the mapping. Usually, such unex-
posed information needs to remain intact as updates are performed
against the store. To address this requirement we use the concept of
merge views. A merge view m : S×S → S combines the updated
store state supd computed by the client and the old store state sold

into the new store state snew (see Figure 5).
To illustrate, consider the merge view for the extended table

CreditInfo(Id, Score, Date):

CreditInfonew = SELECT upd.Id, upd.Score, old.Date
FROM CreditInfo AS upd
LEFT OUTER JOIN CreditInfoold AS old
ON upd.Id = old.Id

The above view together with the query and update views shown in
Figure 4 determine completely the update behavior for the extended
CreditInfo table. The left outer join ensures that the new customer
entities added on the client appear in the CreditInfonew table, and
1Composition, inverse, and range of mappings are defined in a stan-
dard way as the respective algebraic operations on binary relations.

CC Vf g

map = f ◦ g-1

f′ g′

SSCC Vf g

map = f ◦ g-1

f′ g′

SS

Figure 6: Bipartite mapping between C and S

the deleted ones get removed. If a customer’s credit score gets
updated, the Date value remains unchanged.

In contrast to query and update views, whose purpose is to re-
shape data between the client and the store, merge views capture
the store-side state transition behavior. This behavior may go be-
yond preserving unexposed data. For example, if Date denotes the
last date on which the credit score was modified, it may be neces-
sary to reset it to the current date upon each update. More gener-
ally, merge views may implement various update policies such as
updating timestamps, logging updates, resetting certain columns,
or rejecting deletions (using full outer join in the merge view).

Currently, we use merge views exclusively for preserving unex-
posed data. The formal criterion can be stated as

∀s ∈ Range(map) : m(u(q(s)), s) = s

It requires that a client that retrieves all store data and writes it back
unmodified leaves the store in the unchanged state. This property
needs to hold for all mapped store states, i.e., the ones that are
consistent with the specified mapping.

The extended roundtripping criterion that takes merge views into
account can be stated as

∀c ∈ C,∀s ∈ Range(map) : q(m(u(c), s)) = c

It requires that applying the update view u to an arbitrary client
state c, followed by merging the computed store state with the ex-
isting store state, must allow reassembling c using the query view q
from the merged store state.

4.3 Bipartite mappings
The mappings in the Entity Framework are specified using a set of
mapping fragments Σmap = {QC1=QS1, . . ., QCn=QSn}. A
mapping fragment is a constraint of the form QC = QS where QC

is a query over the client schema and QS is a query over the store
schema. We call such mappings bipartite mappings.

A bipartite mapping is one that can be expressed as a composi-
tion mapping of a view with an inverse of a view with the same view
schema. Thus, the mapping given by Σmap above can be expressed
as a composition mapping f ◦ g−1 where the view f : C → V is
given by queries QC1, . . . , QCn, the view g : S → V is given
by queries QS1, . . . , QSn, and V corresponds to the view schema
V1, . . . , Vn induced by these queries (see Figure 6). We refer to Vi

as a fragment view (symbol).
A key property of bipartite mappings is using equality in map-

ping constraints instead of inclusion. Inclusion constraints of the
form Qsrc ⊆ Qtgt used in source-to-target data exchange and
query answering settings are inadequate for data roundtripping be-
cause they specify a ‘one-way’ relationship between the schemas.
For example, the above query inclusion does not constrain the
source database; it may remain empty for each target database.

As we demonstrate shortly, bipartite mappings enable us to com-
pile mappings by applying answering-queries-using-views tech-
niques to the views f and g, one after another. This reduces the
complexity of the solution and enables developing largely symmet-
ric algorithms for generating query and update views.

Person
Id
Name

Person
Id
Name

Employee
Dept

Employee
Dept

CustomerCustomer

HR
Id NameId Name

Client
Id Name Score ...Id Name Score ...

Empl
Id DeptId Dept

CreditScore
BillingAddr

Person
Id
Name

Person
Id
Name

Employee
Dept

Employee
Dept

CustomerCustomer

HR
Id NameId Name

Client
Id Name Score ...Id Name Score ...

Empl
Id DeptId Dept

CreditScore
BillingAddr

Figure 7: Mapping scenario illustrating a combination of vertical
and horizontal partitioning

4.4 Mapping language
The bipartite mappings taken as input by the mapping compiler
are specified using constraints of the form QC = QS where QC

and QS are Entity SQL queries. In the current version of the sys-
tem, these queries, which we call fragment queries, are essentially
project-select queries with a relational-only output and a limited
form of disjunction and negation. This class of mapping constraints
allows expressing a large number of mapping scenarios yet is suf-
ficiently simple that mapping compilation can be performed effec-
tively.

The specification of a fragment query Q is given below:

Q ::= SELECT P [, P]* FROM E AS e WHERE C

C ::= C AND C | C OR C | P IS NULL | P IS NOT NULL |
P = c | P IS OF T | P IS OF (ONLY T)

P ::= e | P.A

where E is an extent with alias e, A is a property of an entity type
or complex type, c is a scalar constant, and T is an entity type or
a complex type. The return type of Q is required to be a row of
scalars and needs to contain the key properties of E.

To illustrate why our mapping language supports disjunction
consider the scenario in Figure 7. A combination of horizontal and
vertical partitioning is used to store the inheritance hierarchy shown
on the left. Table HR holds (portions of) instances of Person and
Employee, but no Customer instances. The mapping fragment for
HR can be specified using OR as shown below. Any other way of
expressing the mapping would require using negation or joins:

SELECT p.Id, p.Name FROM Persons AS p
WHERE p IS OF (ONLY Person) OR p IS OF (ONLY Employee)

=
SELECT t.Id, t.Name FROM HR AS t

The mapping language specified above allows describing most
inheritance mapping scenarios proposed in the literature and imple-
mented in commercial products. In particular, it supports table-per-
hierarchy, table-per-type (vertical partitioning), table-per-concrete-
type (horizontal partioning) strategies, and all their combinations.
Furthermore, it supports entity splitting scenarios where entities are
stored in different tables based on certain property values.

5. VIEW GENERATION ALGORITHM
We start by explaining the intuition behind the algorithm. The key
principle that we use is reducing the mapping compilation problem
to that of finding exact rewritings of queries using views [21].

5.1 Intuition
Consider the problem of obtaining query views from mapping
map = f ◦ g−1. The view f on C and the view g on S are speci-
fied as {V1=QC1, . . ., Vn=QCn} and {V1=QS1, . . ., Vn=QSn},
respectively. Suppose that the view f is materialized. To preserve
all information from C in the materialized view, f must be lossless,

P2
B,CP2

A

P1
BP1

A

CBAID

P2
B,CP2

A

P1
BP1

A

CBAID

C=3

C≠3

R

Legend: V1 V2

Figure 8: Partitioning relation R based on V1 and V2

i.e., an injective2 function. In this case, we can reconstruct the state
of C from the materialized view by finding an exact rewriting of the
identity query on C using the view f . Suppose f′ : V → C is such
a rewriting (depicted as a dashed arrow in Figure 6), given by a set
of queries on V1, . . . , Vn. Hence, we can unfold g in f′ to express
C in terms of S . That gives us the desired query view q = f′ ◦ g.

Update views and merge views can be obtained in a similar fash-
ion by answering the identity query on S . The extra subtlety is that
g need not be injective and may expose only a portion of the store
data through the mapping. This raises two issues. First, the exact
rewriting of the identity query on S may not exist. That is, to lever-
age answering-queries-using-views techniques we need to extract
an injective view from g. Second, we need to ensure that the store
information not exposed in the mapping can flow back into the up-
date processing in the form of a merge view. Before we present a
general solution, consider the following example:

EXAMPLE 1 Suppose that the store schema contains a single rela-
tion R(ID, A, B, C). Let map = f ◦ g−1 where g is defined as

V1 = πID,A(R)

V2 = πID,B(σC=3(R))

The identity query on R cannot be answered using fragment views
V1 and V2 since g is non-injective and loses some information in
R. So, we translate the store schema into an equivalent partitioned
schema containing relations PA

1 (ID, A), P B
1 (ID, B), P A

2 (ID, A),
P B,C

2 (ID, B, C) with the following schema constraints: for all
i 	= j, πID(P X

i) ∩ πID(P Y
j) = ∅ and πID(P X

i) = πID(P Y
i).

The partitioning of R is illustrated in Figure 8. The equivalence
between the partitioned schema and the store schema {R} is wit-
nessed by two bijective views p and r, where p is defined as

P A
1 = πID,A(σC=3(R))

P B
1 = πID,B(σC=3(R))

P A
2 = πID,A(σC�=3(R))

P B,C
2 = πID,B,C(σC�=3(R))

and r is defined as

R = πID,A,B,3(P
A
1 � P B

1) ∪ (P A
2 � P B,C

2)

The above partitioning scheme is chosen in such a way that the
view g can be rewritten in terms of union queries on the partitions.
Thus, g can be restated in terms of PA

1 , P B
1 , and P A

2 as follows:

V1 = P A
1 ∪ P A

2

V2 = P B
1

We call partitions P A
1 , P B

1 , P A
2 exposed because they appear

in the above rewriting. They are depicted as a shaded region in
Figure 8. Partition P B,C

2 is unexposed (white region). Notice that
the above rewriting is injective, i.e., information-preserving, on the
schema formed by the exposed partitions. Due to the constraint

2f is injective if f(x) = z and f(y) = z implies x = y

πID(P A
1) = πID(P B

1) on the partitioned schema, we can recon-
struct the exposed partitions from V1 and V2 as follows:3

P A
1 = V1 � V2

P B
1 = V2

P A
2 = V1 � V2

Now we have all the building blocks to construct both g′ in Fig-
ure 6 and the merge view. Let Rold, Rnew , and Rupd denote re-
spectively the old state of R in the store, the new state obtained by
merging Rupd and Rold, and the updated state of R computed us-
ing g′. Rupd is populated from the exposed partitions, ignoring the
information in the unexposed partitions4:

Rupd =πID,A,B,3(P
A
1 � P B

1) ∪ πID,A,NULL,NULL(P A
2)

=πID,A,B,3(V1 � V2) ∪ πID,A,NULL,NULL(V1 � V2)

Since πID(P A
1) = πID(P B

1), so πID(V2) ⊆ πID(V1) and Rupd

can be simplified as follows:

Rupd = πID,A,B,3(V1
−−� V2)

The merge view for Rnew assembles the exposed partitions that
carry the updated client state (Rupd) and the unexposed partitions
holding the old store state (Rold). The goal is to keep as much of
the old store information in the unexposed partitions as possible.
(Notice that keeping the complete information is undesirable. For
example, preserving all of PB,C

2 data from the old store state would
prevent the client from deleting any tuples from R with C 	= 3,
which are partially visible through V1.) More precisely, the con-
straint that we exploit is that partition PB,C

2 of Rold is contained in
partition P B,C

2 of Rnew (but is not equivalent to it). Unfolding the
definitions of partitions, while replacing R by Rupd for all exposed
partitions and replacing R by Rold for all unexposed partitions,
yields:

Rnew = σC=3(Rupd) ∪
(πID,A(σC�=3(Rupd))

−−� πID,B,C(σC�=3(Rold)))

= πID,A,B,CASE...AS C(Rupd
−−� Rold)

where the abbreviated case statement is:

CASE WHEN Rold.ID IS NOT NULL THEN Rold.C ELSE 3 END

Composing the merge view with g′ produces

Rnew = πID,A,B,CASE...AS C(V1
−−� V2

−−� Rold)

Unfolding f (from map = f ◦ g−1) in the above expression states
V1 and V2 in terms of the client schema and produces the final
transformation that drives the update pipeline.

The example motivates several issues. First, we need to jus-
tify that the above approach produces query, update, and merge
views that satisfy the conditions from Section 4, i.e., solve the data
roundtripping problem. Second, we need to develop a partition-
ing scheme to express the client and store schema using an equiv-
alent schema that allows rewriting the mapping constraints using
union queries. This rewriting simplifies the algorithm for recon-
structing partitions and testing injectivity of f when constructing
query views. Notice that the choice of the partitioning scheme is
sensitive to the mapping language. Third, as we show below, the
generated case statements can become quite complex and require

3
� is the left anti-semijoin, −−� is the left outer join

4We use extended π operator which may contain constants and
computed expressions in the projection list

g

Pexp SS
Punexp

V
pexp

punexp

h
h′ rCC f

g

Pexp SS
Punexp

V
pexp

punexp

h
h′ rCC f

Figure 9: Obtaining u and m using partitioning scheme

careful reasoning. Finally, unfolding f in the expression V1
−−� V2

may require further simplification to avoid gratuitous self-joins and
self-unions if for example both terms are queries over the same en-
tity set in the client schema. We discuss each of these issues in the
subsequent sections.

5.2 Mapping validation
The approach exemplified in the previous section works only if
we start with a mapping that roundtrips. To illustrate what can
go wrong, suppose that f in Example 1 is given as {E1 = V1,
E2 = V2} for entity sets E1, E2. So, the mapping implies
πID(E2) ⊆ πID(E1). If this condition is violated for some given
E1 and E2, there exists no R that satisfies the mapping. Hence, the
mapping does not roundtrip and it is impossible to generate query
and update views that store and retrieve data losslessly. To validate
that a mapping roundtrips we exploit the following theorem:

THEOREM 2 Let map = f ◦g−1 be a bipartite mapping. Then the
following conditions are equivalent:

1. map ◦ map−1 = Id(C)

2. f is injective and Range(f) ⊆ Range(g)

That is, a mapping roundtrips if and only if f is injective and the
range constraints of f (i.e., those inferred from f and the schema
constraints in C) imply the range constraints of g (i.e., those in-
ferred from g and the schema constraints in S). As shown in [28],
the problem of computing the range of a mapping (or a view, as a
special case) can be reduced to that of mapping composition. Com-
posing mappings is very challenging [15, 4]. Due to space con-
straints, in this paper we only consider the first part of the mapping
validation task, checking the injectivity condition. As we show
next, this check can be done by exploiting the partitioning scheme.

5.3 General solution
In this section we describe our view generation approach in general
terms and show that it solves the data roundtripping problem.

Let P be a schema containing a set of relations (partitions) and a
set of constraints ΣP . P is a partitioned schema for S relative to a
query language L if there exists a procedure that (i) allows rewriting
each query g ∈ L on S using a unique set of partitions in P , (ii)
each such rewriting is injective on the subschema Pexp formed by
the partitions used in the rewriting and the respective constraints
from ΣP , and (iii) the rewriting of the identity query on S uses all
partitions in P . (In Example 1, Pexp contains PA

1 , P B
1 , P A

2 and
constraints πID(P A

1) = πID(P B
1), πID(P A

1) ∩ πID(P A
2) = ∅.)

By (ii) and (iii), there exist bijective views r : P → S , r ∈ L
and p : S → P witnessing the equivalence of P and S .

As shown in Figure 9, query g partitions S into P ⊆ Pexp ×
Punexp such that pexp : S → Pexp and punexp : S → Punexp are
view complements [2] that together yield p. By condition (ii), g
can be rewritten as h ◦ pexp where h is injective. Let h′ be an exact
rewriting of the identity query on Pexp using h, i.e., h′ reconstructs
Pexp from V . Then, the update view u and merge view m can be
constructed as follows

u := f ◦ h′ ◦ r[., ∅]
m(s1, s2) := r(pexp(s1), punexp(s2))

where ∅ is the Punexp-state where all relations are empty, the view
r[., ∅] is such that r[., ∅](x) = y iff r(x, ∅) = y, and s1, s2 ∈ S .

Assuming that f is injective and Range(f) ⊆ Range(g), it
is easy to show that u and m satisfy the information-preservation
condition of Section 4. The extended roundtripping criterion holds
if we choose the view r in such a way that

∀x ∈ Pexp,∀s ∈ S : pexp(r(x, punexp(s))) = x

To obtain such r, in Example 1 we left-outer-joined exposed parti-
tions with unexposed partitions that agree on keys.

As we explain next, for our mapping and view language it is al-
ways possible to obtain the views h, h′, pexp, punexp, and r that
satisfy the conditions stated above. Therefore, our solution is com-
plete in that it allows constructing query, update, and merge views
for each given valid mapping.

Due to conditions (i)–(iii), g is injective if and only if Punexp is
empty, i.e., has zero partitions. We exploit this property to check
the injectivity of f required by Theorem 2. To do that, we swap the
sides of the mapping such that f in the above construction takes the
place of g, and apply the partitioning scheme to C in a symmetric
fashion.

5.4 Compilation steps
In summary, mapping compilation comprises the following steps:

1. Subdivide the mapping into independent sets of fragments.

2. Perform partial mapping validation by checking the condi-
tion Range(f) ⊆ Range(g) (using mapping composition
techniques).

3. Apply the partitioning scheme to C and f .

4. If the Punexp obtained above is non-empty, abort since f is
not injective. Otherwise, produce f ′ as an exact rewriting of
the identity query on C.

5. Construct query view as q = f′ ◦ g.

6. Simplify q.

7. Apply the partitioning scheme to S and g (Punexp produced
here may be non-empty). Rewrite g as h ◦ pexp.

8. Produce h′ as an exact rewriting of identity query on Pexp.

9. Obtain u and m as shown in the previous section.

10. Simplify u and m.

Step 1 uses a divide-and-conquer method to scope the mapping
compilation problem. Two mapping constraints are dependent if
their fragment queries share a common extent symbol or some in-
tegrity constraint spans their extent symbols; in this case, they are
placed into the same subset of constraints. All the remaining steps
process one such subset of constraints at a time. Steps 3–6 produce
query views, while Steps 7–10 produce update and merge views.
Next we discuss the partitioning scheme, which is applied in Step 3
and Step 7 of mapping compilation.

5.5 Partitioning scheme
A partitioning scheme allows rewriting the mapping constraints us-
ing queries on partitions. Thus, its choice depends directly on the
mapping language. Since the fragment queries used in our mapping
language are join-free, the partitioning scheme can be applied to
one extent at a time. Imagine that the data that belongs to a certain
extent is laid out on a 2-dimensional grid along a ‘horizontal’ and
a ‘vertical’ axis where each point on the vertical axis corresponds
to a combination of (a) entity type, (b) complex types appearing in
entities, (c) conditions on scalar properties, and (d) is null / is not
null conditions on nullable properties; and each point on the hor-

izontal axis corresponds to a single direct or inherited attribute of
an entity or complex type.

The partitioning scheme can produce a very large number of par-
titions if applied directly to the language L of fragment queries
defined in Section 4.4. Therefore, we restrict L to the actual frag-
ment queries appearing in a given mapping map. The partitioning
along the vertical axis can be computed using the following recur-
sive algorithm, which is invoked for each extent of type Tp. The
elementary path to the extent is passed in p:

procedure PartitionVertically(p, Tp, map)
Part := ∅ // start with an empty set of partitions
for each type T that is derived from or equal to Tp do

P := {σp IS OF (ONLY T)}
for each direct or inherited member A of T do

if map contains a condition on p.A then
if p.A is of primitive type then

P := P × Dom(p.A, map)
else if p.A is of complex type TA then

P := P × PartitionVertically(p.A, TA, map)
end if

end for
Part := Part ∪ P

end for
return Part

Each tuple of conditions added to Part is interpreted as a con-
junction. Dom(p.A, map) denotes the domain of p.A relative to
the mapping map. That is, if p.A is an enumerated or boolean do-
main, Dom(p.A, map) contains conditions of the form p.A = c
for each value c from that domain, and the IS NULL condition
if p.A is nullable. Otherwise, Dom(p.A, map) contains equality
conditions on all constants appearing in conditions on p.A in any
mapping fragment in map, treating NOT NULL conditions as il-
lustrated in the example below.

EXAMPLE 2 Suppose the mapping constraints contain conditions
(p = 1) and (p IS NOT NULL) on path p of type integer. Then,
Dom(p, map) := {σcond1 , σcond2 , σcond3} where

cond1 := (p = 1)

cond2 := (p IS NULL)

cond3 := NOT(p = 1 OR p IS NULL)

Every pair of conditions in Dom(p, map) is mutually unsatisfi-
able.

�
Dom(p, map) is a tautology. Notice that (p IS NOT

NULL) is equivalent to (cond1 OR cond3). That is, selection
σp IS NOT NULL(R) can be rewritten as a union query σcond1(R)∪
σcond3(R).

The following example illustrates how the partitioning algorithm
works in presence of complex types:

EXAMPLE 3 Consider an entity schema shown on the left in Fig-
ure 7 where BillingAddr is a nullable property with complex type
Address, and Address has a subtype USAddress. Then, the vertical
partitioning algorithm produces the following partitions, which list
all possible shapes of entities that can appear in the extent:

P1 : σe IS OF (ONLY Person)

P2 : σe IS OF (ONLY Customer) AND e.BillingAddr IS NULL

P3 : σe IS OF (ONLY Customer) AND e.BillingAddr IS OF (ONLY Address)

P4 : σe IS OF (ONLY Customer) AND e.BillingAddr IS OF (ONLY USAddress)

P5 : σe IS OF (ONLY Employee)

Horizontal partitioning is done by splitting each vertical partition
in Part according to the properties projected in mapping fragments
in map. It is easy to show that the above partitioning scheme allows

expressing each fragment query appearing in map as a union query
over the produced partitions.

5.6 Reconstructing partitions from views
We move on to Step 4 and Step 8 of mapping compilation. Let P be
the set of partitions constructed in the previous section for a given
C or S extent. Let h be a view defined as V = (V1, . . . , Vn) where
each fragment view Vi is expressed as a union query over partitions
in P. To simplify the notation, each view can be thought of as a set
of partitions. Let Pexp =

�
V be all partitions that are exposed

in views in V. Let the set of non-key attributes of each partition P
and view V be denoted as Attrs(P) and Attrs(V), respectively.

If Pexp 	= P, then h is non-injective (as explained in Sec-
tion 5.3). However, even if all partitions are used in V, h may
still be non-injective. Injectivity holds only if we can reconstruct
each partition P ∈ P from the views V. The algorithm that does
that is presented below.

procedure RecoverPartitions(Pexp,P, V)
Sort V by increasing number |V | of partitions per view and

by decreasing number |Attrs(V)| of attributes per view
for each partition P ∈ Pexp do

Pos := ∅; Neg := ∅; // keeps intersected & subtracted views
Att := Attrs(P); // attributes still missing
PT := P; // keeps partitions disambiguated so far
// Phase 1: intersect
for (i = 1; i ≤ n and |PT | > 1 and |Att| > 0; i++) do

if P ∈ Vi then
Pos := Pos ∪ Vi; PT := PT ∩ Vi

Att := Att − Attrs(Vi)
end if

end for
// Phase 2: subtract
for (i = n; i ≥ 1 and |PT | > 1; i--) do

if P 	∈ Vi then
Neg := Neg ∪ Vi; PT := PT ∩ Vi

end if
end for
if |PT | = 1 and |Att| = 0 then

Recovered[P] := (Pos, Neg)
end if

end for
return

The algorithm takes as input the exposed partitions Pexp and the
fragment views V and constructs an associative table Recovered
(at the bottom of the algorithm) that maps a partition P to a set of
‘positive’ views Pos and ‘negative’ views Neg. These views, if
they exist, can be used to reconstruct P by joining all views in Pos
and subtracting (using anti-semijoin) the views in Neg as P = (�

Pos) � (∪ Neg).
The algorithm starts by ordering the views. This step is a heuris-

tic for producing more compact expressions, which may use fewer
views. Every set of rewritings produced by the algorithm is equiv-
alent under each view ordering. The set of needed attributes Att
represents a horizontal region, while the recovered partitions PT
represents the vertical region of the view space. These regions need
to be narrowed down to exactly P , for each P ∈ Pexp. In Phase 1,
we narrow the vertical region by intersecting the views that contain
P , while keeping track of the attributes they provide. If joining the
views is insufficient to disambiguate P tuples, then in Phase 2, we
further narrow the vertical region using anti-semijoins with views
that do not contain P . P is fully recovered if PT does not con-
tain any tuples beyond those in P (i.e., |PT | = 1) and covers all
the required attributes (i.e., |Att| = 0). Due to this condition, the
algorithm is sound, i.e., each found rewriting is correct.

Pa
rti

tio
ns P1

P2

P3

P4

P5

V1 V2 V3 V4 Views

V1 = π(P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5)
V2 = π(P2 ∪ P3 ∪ P4)
V3 = π(P4)
V4 = π(P2 ∪ P5)

Pa
rti

tio
ns P1

P2

P3

P4

P5

V1 V2 V3 V4 Views

V1 = π(P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5)
V2 = π(P2 ∪ P3 ∪ P4)
V3 = π(P4)
V4 = π(P2 ∪ P5)

Figure 10: Partitions and views (based on Example 3)

EXAMPLE 4 Consider the partitioning scheme in Example 3. Let
the rewritten fragment queries used in the mapping be expressed
as shown in Figure 10 (for brevity, we finesse horizontal par-
titioning, represented by unqualified π). Sorting yields V =
(V3, V4, V2, V1). Suppose that V1 contains an attribute (e.g., Name)
that is required by every partition. Then, the algorithm produces
(up to projection – π is omitted for brevity):

P1 = (V1) � (V2 ∪ V4)

P2 = (V4 � V2 � V1)

P3 = (V2 � V1) � (V4 ∪ V3)

P4 = (V3 � V1)

P5 = (V4 � V1) � (V2)

Expanding the view definitions shows that the above rewritings are
implied by the expressions in Figure 10. To illustrate the effect of
sorting, notice that view V3 need not be used in the negative part of
P1, and V2 does not appear in the positive part of P4, in contrast to
using the default sorting V1, V2, V3, V4.

To establish the completeness of the algorithm, we need to show
that it fails to recover P only if P cannot be reconstructed from
V. This result is based on the following theorem. For clarity of
exposition, we speak of constants P and sets V while reusing the
symbols for partitions and views.

THEOREM 3 Let p be a constant from P, and V = {V1, . . . , Vn}
be a set of subsets of P. Then, there exists a relational expression
Expr(V1, . . . , Vn) such that Expr = {p} if and only if
�

{V | p ∈ V, V ∈ V} −
�

{V | p 	∈ V, V ∈ V} = {p}
The above theorem proves the completeness of the algorithm,

but does not guarantee that each found expression is minimal, i.e.,
uses the smallest possible number of views and/or operators. Find-
ing a minimal solution is equivalent to solving the set cover prob-
lem, which is NP-complete. So, the algorithm implements a greedy
approach which often produces near-optimal results. Due to sort-
ing, the overall complexity of the algorithm is O(n log n), while
Phases 1 and 2 are O(n) in the number of fragment views.

5.7 Exploiting outer joins
The algorithm RecoverPartitions tells us how to reconstruct each
partition P of a given extent. Ultimately, we need to produce a
rewriting for the entire extent, which combines multiple partitions.
Consider Examples 3 and 4. To obtain the query view for the Per-
sons extent, we could union partitions P1, . . . , P5 from Example 4.
The resulting expression would use ten relational operators and be
clearly suboptimal. Instead, we exploit the following observation.
Since each fragment query produces a new view symbol Vi and
is join-free, every Vi contains only partitions from a single extent.
Therefore, each extent can be reconstructed by doing a full outer
join of all the views that contain partitions from that extent. The
full-outer-join expression can be further simplified using inclusion
and disjointness constraints on the views.

EXAMPLE 5 Let Persons = τ (E) where τ is an expression that
performs entity construction, fills in required constants, etc. (we
talk about it shortly). Then, E can be obtained using the following
expressions, all of which are equivalent under the view definitions
of Figure 10:

E = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5

= V1
−−�−− V2

−−�−− V3
−−�−− V4

= (V1
−−� (V2

−−� V3)) −−� V4(∗)

= ((V1
−−� V2) −−� (V3 ∪a V4))(∗∗)

∪a denotes union without duplicate elimination (UNION ALL). The
equivalence can be shown by noticing that the following constraints
hold on the views: V3 ∩ V4 = ∅, V3 ⊆ V2 ⊆ V1, V4 ⊆ V1.

Using full outer joins allows us to construct an expression that is
minimal with respect to the number of relational operators: n views
are connected using the optimal number of (n−1) binary operators.
Still, as illustrated in Example 5, multiple minimal rewritings may
exist. In fact, their number grows exponentially with n. As we
illustrate in the experimental section, these rewritings may have
quite different performance characteristics when they are used to
execute queries on the database. One reason is the inability of the
optimizer to push down selection predicates through outer joins.

To find a good rewriting that is likely to result in efficient execu-
tion plans, we use a heuristic that increases optimization opportu-
nities by replacing outer joins by inner joins and unions. As a side
effect, it helps avoid unnecessary joining of data that is known to
be disjoint and minimize the size of intermediate query results.

The algorithm we use performs successive grouping of the ini-
tial full-outer-join expression using the inclusion and disjointness
constraints between the views. The views are arranged into groups,
which are relational expressions in the prefix notation. The con-
straints between groups are tested using set operations on the par-
titions they contain. Let ρ(L) denote the set of partitions used in
all groups and subgroups in L, where L is a sequence of groups.
For example, consider a group G = −−�−−(V2, V3) containing two
views from Figure 10. We have ρ(G) = {P2, P3, P4}. The group-
ing algorithm is shown below.

procedure GroupViews(V)

Arrange V into pairwise disjoint −−�−−-groups G1, . . . , Gm

such that each group contains views from a single source extent
GV := −−�−−(G1, . . . , Gm)
for each group G in GV do recursively depth-first

if G = (−−�−− : , L1, , L2,) and |L1| > 0 and |L2| > 0 then
G1 = (−−�−− : L1); G2 = (−−�−− : L2)

if ρ(L1) ∩ ρ(L2) = ∅ then G = −−�−−(∪a(G1, G2),)

else if ρ(L1) = ρ(L2) then G = −−�−−(� (G1, G2),)

else if ρ(L1) ⊇ ρ(L2) then G = −−�−−(−−�(G1, G2),)

else if ρ(L1) ⊆ ρ(L2) then G = −−�−−(−−�(G2, G1),)
end if

end if
end for
Flatten singleton groups in GV

return GV

The grouping is performed by replacing−−�−− by ∪a, �, and −−�,
in that order, where possible. Using ∪a (UNION ALL) is critical
to avoid the sorting overhead upon query execution. The above
algorithm does not prescribe the choice of L1 and L2 uniquely. In
our implementation, a greedy approach is used to find ‘large’ L1

and L2 in linear time, yielding the overall O(n) complexity.
We defer the explanation of the very first step of the algorithm,

the initial grouping by source extents, to Section 5.9.

5.8 Producing CASE statements
In Example 5, we used the expression τ to encapsulate constant cre-
ation and non-relational operators that reside on top of a relational
expression. In this section we explain how τ is obtained. Consider
the partitions shown in Example 3. Upon assembling the Persons
extent from P1, . . . , P5 we need to instantiate Persons, Customers,
or Employees depending on the partition from which the tuples
originate. Thus, all tuples coming from P1 yield Person instances,
while all tuples coming from P2 or P3 or P4 produce Customer in-
stances. Furthermore, for all tuples in P2, the BillingAddr property
needs to be set to NULL.

Let the boolean variables bP1, . . . , bP5 keep track of the tuple
provenance. That is, bP1 is true if and only if the tuple comes from
P1, etc. Then, we can determine what instances and constants need
to be plugged into τ using a disjunction of bP variables. This fact
is not incidental: it is due to using the partitioning scheme that
allows us to rewrite all fragment queries as unions of partitions.
Continuing with Example 3, we obtain Persons as

CASE WHEN bP1 THEN Person(. . .)
WHEN (bP2 OR bP3 OR bP4) THEN Customer(. . .,

CASE WHEN bP2 THEN NULL
WHEN bP3 THEN Address(. . .)
WHEN bP4 THEN USAddress(. . .)
END AS BillingAddr, . . .)

WHEN bP5 THEN Employee(. . .)
�
E
�

where E is the relational expression whose construction we dis-
cussed in the previous section. By exploiting outer joins we ob-
tained a compact E = ((V1

−−� V2) −−� (V3 ∪a V4)). However,
now we need to do some extra work to determine the boolean vari-
ables bP1, . . . , bP5 from E. That is, the problem is to rewrite bP

variables in terms of bV variables, where bVi is true if and only if
the tuple originates from Vi.

The information needed for this rewriting is delivered by the Re-
coverPartitions algorithm of Section 5.6. The sets Pos and Neg
of intersected and subtracted views directly translate into a boolean
conjunction of positive and negated boolean literals. Hence, con-
tinuing Example 4 we obtain

bP1 = bV1 ∧ ¬bV2 ∧ ¬bV4

bP2 = bV4 ∧ bV2 ∧ bV1

bP3 = bV2 ∧ bV1 ∧ ¬bV4 ∧ ¬bV3

bP4 = bV3 ∧ bV1

bP5 = bV4 ∧ bV1 ∧ ¬bV2

The bP variables in the case statement can now be replaced by
their bV rewritings. The disjunction (bP2∨bP3∨bP4) can be further
compacted using standard boolean optimization techniques. Notice
that by exploiting the constraints in Figure 10 we could obtain an
even more optimal rewriting (bP2∨bP3∨bP4) = bV2 , by extending
the RecoverPartitions algorithm to consider unions of partitions.

5.9 Eliminating self-joins and self-unions
We discuss the final simplification phase of mapping compilation,
performed in Step 6 and Step 10.

EXAMPLE 6 Consider constructing query views in Example 5. In
Step 5 we expand the view symbols Vi by fragment queries on re-
lational tables. Suppose the fragment queries for V2 and V3 are on
the same table, e.g., V2 = R and V3 = σA=3(R). If we choose the
rewriting (∗), then V2

−−� V3 becomes a redundant self-join and
can be replaced by R. We obtain:

E = (V1
−−� R) −−� V4

In contrast, choosing the rewriting (∗∗) gives us

E = ((V1
−−� R) −−� (σA=3(R) ∪ V4))

To bias the algorithm GroupViews toward the top expression
above, in its first step we group the fragment views according to
their source extents. For query views, source extents are tables; for
update views, source extents are those in the entity schema. The
main loop of GroupViews preserves this initial grouping.

Eliminating the redundant operations poses an extra complica-
tion. As explained in the previous section, we need to keep track
of tuple provenance. So, when self-joins and self-unions get col-
lapsed, the boolean variables bV need to be adjusted accordingly.
These boolean variables are initialized in the leaves of the query
tree by replacing each Vi by Vi × {True AS bVi}. In Entity SQL,
boolean expressions are first-class citizens and can be returned by
queries (see Figure 4). To preserve their value upon collapsing of
redundant operators, we use several rewriting rules, one for each
operator. Let b1 and b2 be computed boolean terms, A and B be
disjoint lists of attributes, c1 and c2 be boolean conditions, and let

E1 = πb1,A,B(σc1(E))

E2 = πb2,A,C(σc2(E))

Then, the following equivalences hold:

E1 �A E2 = πb1,b2,A,B,C(σc1∧c2(E))

E1
−−�

A
E2 = πb1,(b2∧c2),A,B,C(σc1(E))

E1
−−�−−A

E2 = π(b1∧c1),(b2∧c2),A,B,C(σc1∨c2(E))

Observe that if πA(E1) ∩ πA(E2) = ∅, then E1 ∪a E2 =

E1
−−�−−A

E2. The disjointness holds for ∪a introduced by the
GroupViews algorithm because it requires the unioned expressions
to have non-overlapping keys. Therefore, for ∪a we can use the
same rule as for −−�−−.

The presented rules assume two-valued boolean logic, where
outer joins produce False values instead of NULLs for boolean
terms. However, like standard SQL, Entity SQL uses three-valued
boolean logic (True, False, NULL). To compensate for it, we trans-
late nullable boolean expressions into non-nullable ones that re-
place NULLs by False values. This can be done by wrapping a
nullable boolean expression b as (b AND (b IS NOT NULL)) or as
(CASE WHEN b THEN True ELSE False END).

The final query view produced by the mapping compiler for the
scenario of Figure 7 is shown in [5] (there BillingAddr is assumed
to be atomic). It illustrates the compound effect of most of the
presented techniques.

6. EVALUATION
The goal of a client-side mapping layer is to boost the developer’s
productivity while offering performance comparable to a lower-
level solution that uses handcoded SQL. In this section we discuss
the experimental evaluation of the Entity Framework, focusing on
the mapping compiler.

Correctness. The top priority for the mapping compiler is cor-
rectness. It needs to produce bidirectional views that roundtrip
data, otherwise data loss or corruption is possible. In practice,
proving correctness of a complex system on paper is insufficient,
since errors unavoidably creep into the implementation. We fol-
lowed two paths. First, our product test team developed an auto-
mated suite that generates thousands of mappings by varying some
core scenarios. The compiled views are verified by deploying the
entire data access stack to query and update pre-generated sample
databases. Although this does not guarantee complete coverage, it

exercises many other parts of the system (e.g., client-side query op-
timization) in addition to the mapping compiler. The second eval-
uation technique was developed by our colleagues in the software
verification group at Microsoft Research: a tool that translates En-
tity SQL queries into first-order logic formulas and feeds them into
a theorem prover. As we explained in Section 4, testing roundtrip-
ping of views expressed in Entity SQL is undecidable, so the prover
may not terminate. For the positive cases, it has been able to verify
all views tested so far.

Efficiency. Another aspect that we studied is the efficiency of
mapping compilation. Step 2 of the main algorithm is the only
compilation step that requires exponential time. Steps 3–10 are
O(n log n). Subdividing the mapping constraints in Step 1 usually
yields a manageable number of fragments n. So far, we have not
seen cases where n exceeded a few dozen. Compiling mappings
prior to query execution was a fundamental design choice, which
alleviates performance issues; it eliminates the runtime penalty of
teasing out the data transformation logic defined in a mapping. In
our initial design, the compiler was invoked upon the first query
or update issued by the application, yielding a one-time perfor-
mance hit per lifetime of an application. This few-second delay
was deemed unacceptable. One reason is that applications are re-
run frequently during development. Another is that mid-tier appli-
cations often shut down and restart for load balancing. Therefore,
we decided to factor out the compiler execution from the runtime
and integrate it with the development environment (IDE). This ap-
proach may enable using exhaustive, exponential-time techniques
in place of the currently deployed heuristics, where view generation
runs as a compile-time background job and recompiles only those
parts of the mapping that have been modified by the developer.

Performance. Mapping compilation plays a key role both in the
client-side query rewriting and server-side execution. In the algo-
rithms we presented, we made heavy use of implied constraints to
simplify the generated views. To illustrate these benefits qualita-
tively, consider the following experiment run on the Adventure-
Works sample database shipped with Microsoft SQL Server. We
partitioned the Sales table horizontally into H1 and H2, and verti-
cally into V1 and V2. This produces two mapping scenarios, where
the sales data needs to be reassembled from the respective tables.
Leveraging the mapping constraints allows us to rewrite−−�−− as ∪a

(exploiting the disjointness of H1 and H2) and as � (knowing that
V1 and V2 agree on keys). Suppose that the client issues selection
queries as shown in Figure 11. If the query views contain outer
joins, the SQL optimizer is not able to push the selections down,
resulting in suboptimal query plans that take many times longer to
execute. This effect multiplies in more complex scenarios.

In addition to the server load, another important performance
metric is the total overhead of the client-side layer. The major fac-
tors contributing to this overhead are object instantiation, caching,
query manipulation, and delta computation for updates. For small
data sets and OLTP-style queries, these factors may dominate the
overall execution time. Therefore judicious optimization of every
code path is critical.

Performance analysts in our product group conducted an exten-
sive study comparing the overall system performance with custom
implementations and competing products. The study found that the
views produced by the mapping compiler are close to those written
by hand by experienced database developers. Details of this study
are beyond the scope of this paper. The generated views enable
the query and update pipelines to produce query and update state-
ments whose server-side execution performance approaches that of
a custom implementation. Some mapping scenarios supported by
the compiler, in particular arbitrary combinations or vertical and

σOrderQty>40(H1 H2)

σSalesOrderID=50270(V1 V2)

σOrderQty>40(H1 ∪a H2)⋈⊐ ⊏

σSalesOrderID=50270(V1 ⋈ V2)⋈⊐ ⊏Horizontal partitioning

Vertical partitioning

Figure 11: Exploiting mapping constraints to speed up queries

horizontal partitioning in inheritance mappings, go beyond those
supported in other commercial systems.

7. RELATED WORK
Transforming data between database and application representa-
tions remains a hard problem. Researchers and practitioners at-
tacked it in a number of ways. A checkpoint of these efforts was
presented by Carey and DeWitt in 1996 [10]. They outlined why
many such attempts, including object-oriented databases and per-
sistent programming languages, did not pan out. They speculated
that object-relational databases would dominate in 2006. Indeed,
many of today’s database systems include a built-in object layer
that uses a hardwired O/R mapping on top of a conventional rela-
tional engine [9, 25]. However, the O/R features offered by these
systems appear to be rarely used for storing enterprise data, with
the exception of multimedia and spatial data types [19]. Among
the reasons are data and vendor independence, the cost of migrat-
ing legacy databases, scale-out difficulties when business logic runs
inside the database instead of the middle tier, and insufficient inte-
gration with programming languages [30].

Database research has contributed many powerful techniques
that can be leveraged for supporting mapping-driven data access.
And yet, there are significant gaps. Among the most critical ones
is supporting updates through mappings. Compared to queries, up-
dates are far more difficult to deal with as they need to preserve data
consistency across mappings, may trigger business rules, and so
on. Updates through database views have a long history. In 1978,
Dayal and Bernstein [13] put forth the view update problem. They
observed that finding a unique update translation even for very sim-
ple views is rarely possible due to the intrinsic underspecification
of the update behavior by a view. As a consequence, commercial
database systems offer very limited support for updatable views.

Subsequent research followed two major directions. One line
of work focused on determining under what circumstances view
updates can be translated unambiguously, more recently for XML
views [8]. Unfortunately, there are few such cases; besides, usually
every update needs to have a well-defined translation, i.e., rejecting
a valid update is unacceptable. Furthermore, in mapping-driven
scenarios the updatability requirement goes beyond a single view.
For example, an application that manipulates Customer and Order
entities effectively performs operations against two views. Some-
times a consistent application state can only be achieved by updat-
ing several views simultaneously. Another line of research focused
on closing the underspecification gap. Several mechanisms were
suggested in the literature, such as constant complement [2] or dy-
namic views [17]. So far, this work has turned out to be mostly

of theoretical value, although techniques of [3, 23] appear to have
had commercial impact. Our computation of merge views exploits
view complements.

Recently, researchers have shown rekindled interest in the view
update problem. Pierce et al. developed a bidirectional mechanism
called ‘lenses’ [7, 16] which uses get and putback functions. Our
query views correspond to get, while update and merge views com-
bined define putback. One of our key distinguishing contributions
is a technique for propagating updates incrementally using view
maintenance [6, 20], which is critical for practical deployment. An-
other one is a fundamentally different mechanism for obtaining the
views, by compiling them from mappings, which allows describ-
ing complex mapping scenarios in an elegant way. Also, in our ap-
proach data reshaping (specified by query and update views) is sep-
arated from the update policy (merge views). Further recent work
on view updates is [24], where delta tuples are stored in auxiliary
tables if the updates cannot be applied to the underlying database.

Mapping compilation was explored in IBM’s Clio project, which
introduced the problem of generating data transformations from
correspondences between schema elements [27]. Our mapping
compilation procedure draws on answering queries using views for
exact rewritings (surveyed in [21] and examined recently in [18,
29]), and exploits several novel aspects such as the partitioning
scheme, bipartite mappings, and rewriting queries under bidirec-
tional mapping constraints. We are not aware of published work
that exploited outer joins and case statements as we did to optimize
the generated views. Other related mapping manipulation problems
are surveyed in [5].

8. CONCLUSIONS
Bridging applications and databases is a fundamental data manage-
ment problem. We presented a novel mapping approach that sup-
ports queries and updates through mappings in a principled way.
We formulated the mapping compilation problem and described
our solution. To the best of our knowledge, the ADO.NET Entity
Framework is the first commercial data access product that is driven
by declarative bidirectional mappings with well-defined semantics.

The new mapping architecture exposed many interesting re-
search challenges. In addition to mapping compilation, these chal-
lenges include enforcing data consistency using a combination of
client-side and server-side constraints, exploiting efficient view
maintenance techniques for object-at-a-time and set-based updates,
translating errors through mappings, optimistic concurrency, noti-
fications, and many others. We plan to report on them in the future.

9. ACKNOWLEDGEMENTS
We are grateful to the members of the Microsoft SQL Server prod-
uct team for their support and engagement in developing the ideas
presented in this paper. Special thanks are due to José Blakeley,
S. Muralidhar, Jason Wilcox, Sam Druker, Colin Meek, Srikanth
Mandadi, Shyam Pather, Tim Mallalieu, Pablo Castro, Kawarjit
Bedi, Mike Pizzo, Nick Kline, Ed Triou, Anil Nori, and Dave
Campbell. We thank Paul Larson, Yannis Katsis, and Renée Miller
for helpful discussions and comments on an earlier version of this
paper.

10. REFERENCES
[1] A. Adya, J. A. Blakeley, S. Melnik, S. Muralidhar, The

ADO.NET Team. Anatomy of the ADO.NET Entity
Framework. In SIGMOD, 2007.

[2] F. Bancilhon, N. Spyratos. Update Semantics of Relational
Views. ACM Trans. Database Syst., 6(4):557–575, 1981.

[3] T. Barsalou, A. M. Keller, N. Siambela, G. Wiederhold.
Updating Relational Databases through Object-Based Views.
In SIGMOD, 1991.

[4] P. A. Bernstein, T. J. Green, S. Melnik, A. Nash.
Implementing Mapping Composition. In VLDB, 2006.

[5] P. A. Bernstein, S. Melnik. Model Management 2.0:
Manipulating Richer Mappings. In SIGMOD, 2007.

[6] J. A. Blakeley, P.-Å. Larson, F. W. Tompa. Efficiently
Updating Materialized Views. In SIGMOD, 1986.

[7] A. Bohannon, B. C. Pierce, J. A. Vaughan. Relational
Lenses: A Language for Updatable Views. In PODS, 2006.

[8] V. P. Braganholo, S. B. Davidson, C. A. Heuser. From XML
View Updates to Relational View Updates: Old Solutions to
a New Problem. In VLDB, 2004.

[9] M. J. Carey, D. D. Chamberlin, S. Narayanan, B. Vance,
D. Doole, S. Rielau, R. Swagerman, N. M. Mattos. O-O,
What Have They Done to DB2? In VLDB, 1999.

[10] M. J. Carey, D. J. DeWitt. Of Objects and Databases: A
Decade of Turmoil. In VLDB. Morgan Kaufmann, 1996.

[11] P. Castro, S. Melnik, A. Adya. ADO.NET Entity Framework:
Raising the Level of Abstraction in Data Programming. In
SIGMOD (demo), 2007.

[12] W. R. Cook, A. H. Ibrahim. Integrating Programming
Languages and Databases: What is the Problem?
ODBMS.ORG, Expert Article, Sept. 2006.

[13] U. Dayal, P. A. Bernstein. On the Updatability of Relational
Views. In VLDB, 1978.

[14] R. A. Di Paola. The Recursive Unsolvability of the Decision
Problem for the Class of Definite Formulas. J. ACM,
16(2):324–327, 1969.

[15] R. Fagin, P. G. Kolaitis, L. Popa, W. C. Tan. Composing
Schema Mappings: Second-Order Dependencies to the
Rescue. ACM Trans. Database Syst., 30(4):994–1055, 2005.

[16] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,
A. Schmitt. Combinators for Bi-Directional Tree
Transformations: A Linguistic Approach to the View Update
Problem. In POPL, 2005.

[17] G. Gottlob, P. Paolini, R. Zicari. Properties and Update
Semantics of Consistent Views. ACM Trans. Database Syst.,
13(4):486–524, 1988.

[18] G. Gou, M. Kormilitsin, R. Chirkova. Query Evaluation
Using Overlapping Views: Completeness and Efficiency. In
SIGMOD, 2006.

[19] S. Grimes. Object/Relational Reality Check. Database
Programming & Design (DBPD), 11(7), July 1998.

[20] A. Gupta, I. S. Mumick. Maintenance of Materialized Views:
Problems, Techniques, and Applications. IEEE Data Eng.
Bull., 18(2):3–18, 1995.

[21] A. Y. Halevy. Answering Queries Using Views: A Survey.
VLDB Journal, 10(4):270–294, 2001.

[22] C. Keene. Data Services for Next-Generation SOAs. SOA
WebServices Journal, 4(12), 2004.

[23] A. M. Keller, R. Jensen, S. Agrawal. Persistence Software:
Bridging Object-Oriented Programming and Relational
Databases. In SIGMOD, 1993.

[24] Y. Kotidis, D. Srivastava, Y. Velegrakis. Updates Through
Views: A New Hope. In ICDE, 2006.

[25] V. Krishnamurthy, S. Banerjee, A. Nori. Bringing
Object-Relational Technology to Mainstream. In SIGMOD,
1999.

[26] E. Meijer, B. Beckman, G. M. Bierman. LINQ: Reconciling
Object, Relations and XML in the .NET Framework. In
SIGMOD, 2006.

[27] R. J. Miller, L. M. Haas, M. A. Hernández. Schema Mapping
as Query Discovery. In VLDB, 2000.

[28] A. Nash, P. A. Bernstein, S. Melnik. Composition of
Mappings Given by Embedded Dependencies. In PODS,
2005.

[29] L. Segoufin, V. Vianu. Views and Queries: Determinacy and
Rewriting. In PODS, 2005.

[30] W. Zhang, N. Ritter. The Real Benefits of Object-Relational
DB-Technology for Object-Oriented Software Development.
In BNCOD, 2001.

