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A set containment join is a join between set-valued attributes of two relations, whose join
condition is specified using the subset (⊆) operator. Set containment joins are deployed in many
database applications, even those that do not support set-valued attributes. In this paper, we
propose two novel partitioning algorithms, called the Adaptive Pick-and-Sweep Join (APSJ) and
the Adaptive Divide-and-Conquer Join (ADCJ), which allow computing set containment joins
efficiently. We show that APSJ outperforms previously suggested algorithms for many data sets,
often by an order of magnitude. We present a detailed analysis of the algorithms and study their
performance on real and synthetic data using an implemented testbed.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—query process-
ing

General Terms: Algorithms, Experimentation, Performance

1. INTRODUCTION

Set containment queries are utilized in many database applications, especially
when the underlying database systems support set-valued attributes. For exam-
ple, consider a database application used by a human-resource broker company
to match the skills of job seekers with the skills required by employers. Imag-
ine that the set of skills needed for filling an open position is stored in the set-
valued attribute {reqSkills} of table Jobs(jobID, {reqSkills}). Another table,
Jobseekers(personID, {availSkills}), keeps a set of skills of potential recruits.
Then, a match between the qualifying job seekers and the jobs can be computed us-
ing a set containment query SELECT Jobseekers.personID, Jobs.jobID WHERE
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Jobs.{reqSkills} ⊆ Jobseekers.{availSkills}. In this query, the tables are
joined on their set-valued attributes using the subset operator ⊆ as the join condi-
tion. This kind of join is called set containment join.

Set containment joins are used in a variety of other scenarios. If, for instance,
our first relation contained sets of parts used in construction projects, and the
second one contained sets of parts offered by each equipment vendor, we could
determine which construction projects can be supplied by a single vendor using
a set containment join. Or, consider a database application that recommends to
students a list of courses that they are eligible to take. Such recommendation can be
computed using a set containment join on prerequisite courses and courses already
taken by students.

Notice that containment queries can be utilized even in database systems that
support only atomic attribute values. Consider a relational database of a stock
broker company. Imagine that the investment portfolios of the customers are
kept in a relational table Portfolios(portfolioID, stockID, numPositions),
while the information about the composition of the mutual funds is kept in a table
Funds(fundID, stockID, percentage). Assume that the stock broker wants to
find the portfolios that mirror mutual funds, i.e. those that contain just a portion
of the stocks from a certain mutual fund, and no other stocks. The query

SELECT P.portfolioID, F.fundID FROM Portfolios P, Funds F
WHERE P.stockID = F.stockID

GROUP BY P.portfolioID, F.fundID
HAVING COUNT(*) = (SELECT COUNT(*) FROM Portfolios P2

WHERE P2.portfolioID = P.portfolioID)

joins Portfolios and Funds on the stockID attribute and returns those portfolios
whose stock positions are entirely contained in a fund, together with the fundID.
To see how this query works notice that the number of the joining tuples for a
given P.portfolioID and F.fundID must be equal to the total number of stocks
in portfolio P.portfolioID. The above query corresponds to a set containment
query, although expressed in a less obvious way. Additional types of applications
for containment joins arise when text or XML documents are viewed as sets of words
or XML elements, or when flat relations are folded into a nested representation.

The two best known algorithms for computing set containment joins efficiently are
the Partitioning Set Join (PSJ) proposed in [Ramasamy et al. 2000] and the Divide-
and-Conquer Join (DCJ) that we suggested in [Melnik and Garcia-Molina 2002].
PSJ and DCJ introduce crucial performance gains compared with straightforward
approaches. A major limitation of PSJ is that it quickly becomes ineffective as set
cardinalities grow. In contrast, DCJ depends only on the ratio of set cardinalities
in both relations, and, therefore, wins over PSJ when the sets are large. Often,
the sets involved in the join computation are indeed quite large. For instance,
biochemical databases contain sets with many thousands elements each. In fact,
the fruit fly (drosophila) has around 14000 genes, 70-80% of which are active at any
time. A snapshot of active genes can thus be represented as a set of around 10000
elements. PSJ is ineffective for such data sets.

The contribution of this paper are two novel algorithms called the Adaptive Pick-
and-Sweep Join (APSJ) and the Adaptive Divide-and-Conquer Join (ADCJ), which
ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.
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Relation R Relation S

a = {2, 9}
b = {8, 18}
c = {1, 3}

A = {2, 4, 9}
B = {3, 8, 18}
C = {1, 3, 4}
D = {3, 4, 7}

Table I. Two sample relations with set-valued attributes

extend and improve on the best known algorithms PSJ and DCJ. We show that
ADCJ always outperforms DCJ, especially when the relations to be joined have
different sizes. APSJ overcomes the main limitation of PSJ, namely, its inability
to deal with large sets effectively (like DCJ, APSJ depends only on the ratio of set
cardinalities in both relations). Moreover, it turns out that in most scenarios APSJ
is the top performer overall.

This paper is structured as follows. In Section 2 we explain how signatures
and partitioning are used for computing set containment joins, and illustrate the
algorithms that we developed using a simple example. Section 3 deals with the the-
oretical analysis of the algorithms. After that, in Section 4, we provide a qualitative
comparison of the algorithms. Section 5 describes the testbed that we implemented.
In Section 6 we examine the performance of the algorithms using our testbed. Then,
in Section 7, we address the issue of choosing the best performing algorithm. The
performance trends are analyzed in Section 8. Finally, we discuss related work in
Section 9 and conclude the paper in Section 10.

2. ALGORITHMS

In this section, we explain the algorithms that we developed using a simple example.
We start with a brief overview of set containment joins, signatures and partition-
ing. As a first algorithm, we describe the Partitioning Set Join (PSJ) algorithm
[Ramasamy et al. 2000]. A reader familiar with set containment joins and PSJ may
skip ahead to Section 2.3 where we start describing our new algorithms.

2.1 Set containment joins, signatures and partitioning

A set containment join is a join between set-valued attributes of two relations,
whose join condition is specified using the subset (⊆) operator. Consider two sample
relations R and S shown in Table I. Each of the relations contains one column with
sets of integers, three sets in R and four in S. For easy reference, the sets of R and
S are labeled using letters a, b, c and A, B, C, D, respectively. Computing the
containment join R �⊆ S amounts to finding all tuples (r, s) ∈ R × S such that
r ⊆ s. In our example, R �⊆ S = {(a, A), (b, B), (c, C)}.

Obviously, we can always compute R �⊆ S in a straightforward way by testing
each tuple in the cross-product R × S for the subset condition. In our example,
such approach would require |R| · |S| = 3 · 4 = 12 set comparisons. For large
relations R and S, doing |R| · |S| comparisons becomes very time consuming. The
set comparisons are expensive, since each one requires traversing and comparing a
substantial portion of the elements of both sets. Moreover, when the relations do
not fit into memory, enumerating the cross-product incurs a substantial I/O cost.

For computing set containment joins efficiently, two fundamental techniques have
been suggested: signatures [Helmer and Moerkotte 1997] and partitioning [Ra-
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x ∈ R sig(x)

a 0110
b 1010
c 0101

y ∈ S sig(y)

A 1110
B 1011
C 1101
D 1001

Table II. 4-bit signatures of sets in R and S

masamy et al. 2000]. The idea behind signatures is to substitute expensive set
comparisons by efficient comparisons of signatures. A signature of a set is a hash
value over the content of the set. To be useful for set containment joins, the sig-
natures need to preserve the partial order on sets induced by the subset predicate.
To illustrate, consider the example in Table II. In the table, the signature of each
set from the sample relations R and S is represented as a vector of 4 bits. Each
set element j turns on a bit at the position (j mod 4) in the bit vector. For in-
stance, for set b = {8, 18} we set bit 0 (8 mod 4) and bit 2 (18 mod 4), and obtain
sig({8, 18}) = 1010.

Let ⊆b be the bitwise inclusion predicate. Notice that sig(x) ⊆b sig(y) holds for
any pair of sets x, y with x ⊆ y. Thus, we can avoid many set comparisons by just
testing the signatures for bitwise inclusion. For instance, since sig(b) �⊆b sig(C),
we know that b cannot be a subset of C. Bitwise inclusion can be verified efficiently
by testing the equality sig(x)&¬sig(y) = 0, where & and ¬ are the bitwise AND
and NOT operators. In our example, after 12 signature comparisons we only need
to test 4 pairs of sets for containment: (a, A), (b, A), (b, B), and (c, C). Of these
remaining pairs, (b, A) is rejected as a false positive.

Using signatures helps to reduce the number of set comparisons significantly, yet
still requires |R| · |S| comparisons of signatures. Partitioning has been suggested
to further improve performance by decomposing the join task R � S into k smaller
subtasks R1 � S1, . . . , Rk � Sk such that R � S =

⋃k
i=1 Ri � Si. The so-

called partitioning function π assigns each tuple of R to one or multiple partitions
R1, . . . , Rk, and each tuple of S to one or multiple partitions S1, . . . , Sk. Consider
our sample relations R and S from Table I. Let π(a) = π(b) = π(A) = π(B) = {1},
π(c) = π(C) = {2}, and π(D) = {1, 2}. That is, R is partitioned into R1 = {a, b},
R2 = {c}, and S is partitioned into S1 = {A, B, D}, S2 = {C, D}. Note that we
have constructed π so that tuples in R1 can only join S1 tuples, and R2-tuples
can only join S2-tuples. Thus, finding R �⊆ S amounts to computing (R1 �⊆
S1) ∪ (R2 �⊆ S2). Notice that computing R1 �⊆ S1 = {a, b} �⊆ {A, B, D} and
R2 �⊆ S2 = {c} �⊆ {C, D} requires only 2 · 3 + 1 · 2 = 8 signature comparisons.
Hence, by using partitioning we reduced the total number of signature comparisons
from 12 to 8. We refer to the fraction 8

12 as a comparison factor. The comparison
factor ranges between 0 and 1.

Besides reducing the number of required signature comparisons, partitioning
helps to deal with large relations R and S that do not fit into main memory by stor-
ing the partitions R1, . . . , Rk and S1, . . . , Sk on disk. To minimize the I/O costs of
writing out the partitions to disk and reading them back into memory, the partitions
typically contain only the set signatures and the corresponding tuple identifiers. In
our example, |{a, b}|+ |{c}| = 3 signatures from R1,2 and |{A, B, D}|+ |{C, D}| = 5
ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.
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Fig. 1. Partitioning with PSJ: 7 comparisons, 15 replicated

signatures from S1,2 are stored on disk temporarily. We refer to the ratio between
the total number of signatures that are written out to disk and the total number of
tuples in R and S as the replication factor. In our example, the replication factor
is 3+5

3+4 = 8
7 . Assuming that no partition is permanently kept in main memory, the

optimal replication factor that can be achieved in a partition-based join is 1.
A major challenge of effective partitioning is to construct a partitioning function π

that minimizes the comparison and replication factors. Obviously, π needs to be
correct, i.e., it has to ensure that all joining tuples are found.

2.2 Partitioning Set Join (PSJ)

The Partitioning Set Join (PSJ) is an algorithm proposed by Ramasamy et al.
[2000]. To illustrate the algorithm, we continue with the example introduced above.
Imagine that we want to partition R and S from Table I into k = 8 partitions. The
partition number of each set of R is determined using a single, randomly selected
element of the set. Consider the set a = {2, 9} ∈ R. Let 9 be a randomly chosen
element of a. We assign a to one of the partitions 0, 1, . . . , 7 by taking the element
value modulo k = 8. Thus, a is assigned to partition with index (9 mod 8) = 1,
i.e., to partition R1. Element 18 chosen from b = {8, 18} yields partition number
2 = (18 mod 8). Finally, set c falls into partition R3 based on randomly chosen
element 3 ∈ c. Now we repeat the same procedure for S, but consider all elements
of each set for determining the partition numbers. Taking all elements into account
ensures that all joining tuples will be found. Thus, A = {2, 4, 9} is assigned to
partitions S2, S4, and S1, B = {3, 8, 18} goes into partitions S3, S0, and S2, etc.
The complete partition assignment for R and S is summarized in Figure 1. Notice
that PSJ requires that no R set be empty (a set with no elements cannot be assigned
to any of the partitions without losing joining tuples).

Once both relations are partitioned, i.e., the set signatures and tuple identifiers
have been written out to disk, each pair of partitions is read from disk and joined
independently. For example, when R3 and S3 are joined, the signature of set c is
read from R3, and is compared with the signatures of sets B, C, and D stored
in S3. Hence, computing R3 �⊆ S3 results in 1 · 3 = 3 signature comparisons.
The total number of signature comparisons required in our example amounts to
0+2+2+3+0+0+0+0 = 7, whereas a total of 15 signatures need to be written
out to disk. Thus, in this example, we obtain the comparison factor 7

12 ≈ 0.58, and
ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.
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x ∈ R h1h2h3h4h5h6h7

a 0 1 0 1 0 0 0
b 0 0 0 0 0 0 0
c 1 0 1 0 0 0 0

y ∈ S h1h2h3h4h5h6h7

A 0 1 0 1 0 0 0
B 0 0 1 0 0 0 0
C 1 0 1 1 0 0 0
D 0 0 1 1 0 0 1

Table III. Boolean hash functions used in APSJ example

replication factor 15
3+4 ≈ 2.14.

2.3 Adaptive Pick-and-Sweep Join (APSJ)

The Adaptive Pick-and-Sweep Join (APSJ) generalizes and extends the PSJ al-
gorithm. We illustrate APSJ using our running example of Table I and k = 8
partitions. Assume that there exist k − 1 = 7 boolean hash functions h1, . . . , h7

that take a set of integers as input and return 0 or 1 as output. For example,
consider the functions defined as hi(x) = 1 ⇐⇒ ∃e ∈ x : (e mod 9) = i for
i = 1, . . . , 7. The function with index i fires for set r if and only if r contains an el-
ement, which, taken modulo 9, yields i. Each of these functions is monotone in the
sense that whenever hi fires (i.e., returns 1) for a given set x, it is guaranteed to fire
for each superset of x. For example, consider set c = {1, 3}. Since (1 mod 9) = 1
and (3 mod 9) = 3, we have h1(c) = h3(c) = 1. For set C = {1, 3, 4}, h4 fires in
addition to h1 and h3, since (4 mod 9) = 4. Table III lists the values taken by all
seven functions for the sets a, b, c and A, B, C, D. In general, APSJ can utilize any
kind of monotone hash function, not just the modulo-based ones illustrated above.

Using these k − 1 = 7 functions, we partition our sample relations into k = 8
partitions as follows. For each set r ∈ R, we consider the indexes of the hash
functions that fired, i.e., {j | hj(r) = 1}. We randomly pick an index i from this
set, and assign r to partition Ri. If the set is empty, we assign r to the ‘default’
partition R0. For example, for set c we can choose between index 1 and 3, so say we
select 1 and place c in R1. (The selected indexes are underlined in Table III.) Set b
is placed in R0. Every set s ∈ S is inserted into all partitions Sj with hj(s) = 1,
i.e., we sweep the indexes of all firing functions. Additionally, each s is assigned to
the ‘default’ partition S0. Thus, for example, set A is assigned to partitions S2, S4,
and, additionally, to partition S0. The complete partition assignment produced by
APSJ for our sample relations is depicted in Figure 2.

Notice that because we use the default partitions R0 and S0, k−1 hash functions
produce k partitions. The default partitions allow us to partition the relations
correctly even if R contains empty sets, or, in general, sets for which none of hi

fires (recall that PSJ cannot deal with empty sets). In our example, the joining
tuples b and B are found when the partitions R0 and S0 are read from disk. Overall,
4 + 1 + 1 + 0 + 0 + 0 + 0 + 0 = 6 signature comparisons are needed, while the total
of 16 signatures need to be stored on disk. Hence, we obtain the comparison factor
6
12 = 0.5 and replication factor 16

3+4 ≈ 2.14.
In our tiny running example, APSJ wins over PSJ since it is lucky: had c been

randomly assigned to bucket 4, APSJ would use more signature comparisons than
PSJ. However, in real data, when the set cardinalities are large, PSJ tends to assign
almost all sets of S to each of the Si partitions, yielding many signature comparisons
ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.
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Fig. 2. Partitioning with APSJ: 6 comparisons, 16 replicated

and high replication. APSJ offers an extra ‘tuning knob’ that is not available in
PSJ, namely the boolean hash functions. Because of this flexibility, APSJ can
often be tuned to achieve better performance than PSJ. Notice that if all hash
functions fire with very high probabilities, then each Si will include most of S, so
joins will be expensive. In contrast, if the functions fire with very low probabilities,
then R0 will contain most of R, and we will have to join R0 � S0 = R � S.
Clearly, to minimize the work, we need to select a firing probability somewhere
in the middle. In Section 3.1 we show how to construct the APSJ hash functions
adaptively depending on the characteristics of the input relations.

Both algorithms PSJ and APSJ can be tuned by varying the number of partitions.
The more partitions we use, the fewer comparisons are necessary. However, a larger
number of partitions also causes more replication. (This tradeoff is common for
all partitioning algorithms that we consider and will be illustrated in detail in
Sections 4 and 6).

2.4 Adaptive Divide-and-Conquer Set Join (ADCJ)

The Adaptive Divide-and-Conquer Set Join (ADCJ) is based on the DCJ algo-
rithm that we present in [Melnik and Garcia-Molina 2002]. Again, we illustrate the
ADCJ algorithm using our running example of Table I and k = 8 partitions. We
explain the algorithm using a series of partitioning steps depicted in Figure 3. In
every step, one monotone boolean hash function is used to transform an existing
partition assignment into a new assignment with twice as many partitions. This
transformation, or repartitioning, is done by applying either operator α or opera-
tor β to each pair of partitions Ri � Si, as indicated by the labels ‘α’ and ‘β’ placed
on the forks in Figure 3. Although we illustrate ADCJ conceptually as a branching
tree, the final partition assignment is computed without using any intermediate
partitions (see Appendix G). First, we explain the main idea of DCJ and then
present the contribution of ADCJ, the adaptive design of the α, β-pattern.

The monotone boolean hash functions that we use in Figure 3 are defined as
hi(x) = 1 ⇐⇒ ∃e ∈ x : (e mod 4) = i, where i = 1, 2, 3. Notice that this
definition is similar to the one used for APSJ, except that each element value is
taken modulo 4 instead of 9. Table IV shows the values of functions h1, h2, h3

for the sets from our sample relations. Since the number of partitions doubles in
each step, only log2 8 = 3 steps and, therefore, only 3 boolean hash functions are

ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.
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Fig. 3. Partitioning with ADCJ: 4 comparisons, 11 replicated

x ∈ R h1h2h3

a 1 1 0
b 0 1 0
c 1 0 1

y ∈ S h1h2h3

A 1 1 0
B 0 1 1
C 1 0 1
D 0 0 1

Table IV. Boolean hash functions used in ADCJ example

required to obtain k = 8 partitions. Just like APSJ, ADCJ works with any kind of
hash functions, as long as they are monotone.

Relations R = {a, b, c} and S = {A, B, C, D} form the initial partition assignment
R � S = R0

1 � S0
1 , where the superscript 0 indicates the step number. In Step 1,

we derive a new partition assignment (R1
1 � S1

1) ∪ (R1
2 � S1

2) from R � S using
operator β and hash function h1. Sets B and D with h1(B) = h1(D) = 0 are
assigned to partition S1

1 , while the remaining sets A and C with h1(A) = h1(C) = 1
are inserted into S2

1 . We abbreviate this procedure concisely as S1
1 := S/¬h1,

S2
1 := S/h1. Since h1 is monotone, each subset x of B or D must satisfy h1(x) = 0.

Therefore, partition S1
1 = {B, D} needs to be joined only with those sets in R =

{a, b, c} that satisfy h1(x) = 0, i.e. just with set b. In contrast, each set of R may
possibly be a subset of A or C. Thus, we obtain R1

1 := R/¬h1 and R1
2 := R (the

values 0 and ‘any’ taken by h1 are depicted above R1
1 and R1

2). Notice that instead
of 4 ·3 = 12 signature comparisons required for R � S, only 1 ·2+3 ·2 = 8 signature
comparisons would be needed for joining the partitions of assignment 1.

Given a pair of partitions Ri � Si, operator β splits partition Si and replicates
partition Ri. In contrast, operator α splits Ri and replicates Si. Figure 3 shows
how operator α is used to repartition R1

2 � S1
2 = {a, b, c} � {A, C}. First, R1

2 is
split into R2

3 = R1
2/h2 = {a, b} and R2

4 = R1
2/¬h2 = {c}. Since each superset x

ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.
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Operator Ideally, when Resulting partition assignment

α(R � S, h) |R| ≥ |S| (R/h � S/h) ∪ (R/¬h � S)
β(R � S, h) |R| < |S| (R/¬h � S/¬h) ∪ (R � S/h)

Table V. Repartitioning of R � S using operators α and β, and a monotone boolean hash function h

of a or b must satisfy h2(x) = 1, R2
3 needs to be joined only with those sets of

S1
2 = {A, C} that satisfy h2(x) = 1, i.e., just with the set A. Hence, S2

3 is obtained
as S2

3 = S1
2/h2, whereas S2

4 must contain all of S1
2 = {A, C}. The definitions of

operators α and β are presented in Table V.

Adaptive design of α,β-pattern. The operators α and β both perform correct
repartitioning and thus can be applied interchangeably at each fork in the branching
tree of Figure 3. Different patterns of applying α and β yield distinct partition sizes
in the final assignment, so we can improve performance by selecting the operators
judiciously. Optimal performance is achieved when the comparison and replication
factors are minimal. As shown in Appendix C, the comparison factor is determined
entirely by the firing probabilities of the hash functions, and is independent of the
α,β-labeling of the tree. However, the choice of α,β-pattern is crucial for minimizing
replication. The smallest replication factor is obtained if at each fork we always
split the larger partition and replicate the smaller one. Otherwise, if a suboptimal
choice is made, the replication factor of the subtree originating at that fork increases
and makes the overall replication factor grow. Hence, if |Ri| ≥ |Si|, we should
apply operator α, otherwise we should use β. For example, in Step 1, we have
|R| = 3 < 4 = |S|. Therefore, operator β is best. If we computed the intermediate
partitions, we would know their sizes and could apply the above rule. However, we
do not generate the intermediate partitions, since storing them temporarily on disk
is prohibitively expensive.

Suppose for now that we know the optimal α,β-pattern, i.e., the one that mini-
mizes replication. Then, we can compute the partition assignment of each set of R
or S by ‘tracing’ its way through the tree, with no need for intermediate, material-
ized partitions. In our example, set A belongs initially to S0

1 = S. Given that the
β is applied at the first fork, we compute h(A) to decide whether A is sent to S1

1

(‘up’) or S1
2 (‘down’). Since h1(A) = 1, A is sent ‘down’. At the next fork we send

A both ‘up’ (S2
2) and ‘down’ (S2

4), based on h2(A) = 1 and the use of operator α.
Now the path of A splits, and we have to track both paths. After the final step, A
is assigned to S3

6 and S3
7 . In Appendix G we present a formal specification of the

ADCJ algorithm that computes the partition assignment for each set based on the
above technique.

Thus, our final challenge is to determine a ‘good’ α,β-pattern for the partitioning
technique of the previous paragraph. We design the pattern adaptively based on
the characteristics of the input relations. The key idea is to estimate the sizes of the
intermediate partitions using the firing probabilities of the hash functions. Suppose
that in our example we know that functions h1, h2, h3 fire with probability of 0.5
for sets in R, and with probability 0.6 for sets in S. Consider partitions R1

2 � S1
2

obtained in Step 1 using function h1. The expected size of partition S1
2 = S/h1 can

be estimated as |S1
2 | = 0.6 · |S| = 0.6 · 4 = 2.4. Given that |R1

2| = |R| = 3 > 2.4 =
|S1

2 |, we select operator α for repartitioning R1
2 � S1

2 . Assuming that R1
2 � S1

2 are
ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.
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repartitioned using α, we can estimate the sizes of partitions R2
3 and S2

3 . Since R2
3 =

R1
2/h2 = R/h2, we get |R2

3| = 0.5 · |R| = 0.5 ·3 = 1.5, while the expected size of S2
3 is

0.6 · |S1
2 | = 0.62 · |S| = 1.44. Because |R2

3| = 1.5 > 1.44 = |S1
2 |, we choose operator α

again to repartition R3
3 � S2

3 . Of course, the actual partition sizes may deviate
from the expected values, so we can choose a suboptimal operator. For example,
the estimated size of partition R2

1 is |R2
1| = |(R/¬h1)/¬h2| = (1−0.5)2 · |R| = 0.75,

whereas |S2
1 | = (1 − 0.6)2 · |S| = 0.64. Thus, we choose to apply operator α.

However, as shown in Figure 3, in our example the actual sizes of R2
1 and S2

1 turn
out to be 0 and 1, i.e., β would have been a better choice. In fact, choosing β would
require one less signature to be stored to disk.

To summarize, our algorithm computes the partition assignment in three stages.

(1) First, we construct the hash functions that minimize the comparison factor
(just like in DCJ).

(2) Second, we determine the α,β-tree that reduces replication using the firing
probabilities of the hash functions.

(3) Finally, we compute the partition assignment by tracing each set of R and S
through the α,β-tree.

In the final assignment produced in our example (Assignment 3), the total of
0 + 0 + 0 + 1 + 0 + 2 + 0 + 1 = 4 signature comparisons are required, whereas
11 signatures need to be written out to disk (one more than absolutely necessary
if we had used β for R2

1 � S2
1). Thus, we obtain comparison factor 4

12 ≈ 0.33
and replication factor 11

3+4 ≈ 1.57, close to the best possible replication factor of
10

3+4 ≈ 1.42.

3. ANALYSIS OF THE ALGORITHMS

We start the discussion of the partitioning algorithms APSJ and ADCJ by present-
ing our analytical model. As an efficiency measure we utilize the comparison and
replication factors. Recall that the comparison factor is the ratio between the ac-
tual number of signature comparisons, and |R| · |S|. In other words, the comparison
factor is the probability that the signatures of two randomly selected sets r ∈ R
and s ∈ S will be compared during the join computation. The replication factor
is the ratio of the number of signatures of R and S stored on disk temporarily,
and |R| + |S|. The comparison factor approximates the CPU load, whereas the
replication factor reflects the I/O overhead of partitioning.

Set containment join R �⊆ S can be characterized by a variety of parameters
including the distribution of set cardinalities in relations R and S, the distribution
of set element values, the selectivity of the join, or the correlation of element values
in sets of both relations. In our analysis, we are making the following simplifying
assumptions:

(1) The R, S set elements are drawn from an integer domain D using a uniform
probability distribution1. The size |D| of the domain is much larger than the
number of partitions k and the set cardinalities of R and S.

1Notice that non-integer domains can be mapped onto integers using hashing.

ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.



Adaptive Algorithms for Set Containment Joins · 11

|R|, |S| Relation cardinalities

ρ Ratio of relation cardinalities, ρ =
|S|
|R|

θR, θS Set cardinalities in R and S

λ Ratio of set cardinalities, λ = θS
θR

k Number of partitions

l Number of hash functions used in APSJ, l = k − 1

Table VI. Variables used for analyzing the algorithms

(2) Each set r ∈ R contains a fixed number of θR elements, while each set s ∈ S
contains θS elements, 0 < θR ≤ θS .

(3) Joining each pair of partitions Ri and Si requires |Ri|·|Si| signature comparisons
(for instance, partitions are joined using a nested loop algorithm).

We will relax these assumptions in our experiments in Sections 4 and 6. All
other factors relevant to computing the join are considered identical for every of the
partitioning algorithms. These factors include the number of bits in the signatures,
the size of the available main memory, the buffer management policy of the database
system, etc. For estimating the comparison and replication factors, we additionally
use a derived parameter λ = θS

θR
that denotes the ratio of the set cardinalities, and

the parameter ρ = |S|
|R| that denotes the ratio of the relation sizes. The variables that

we utilize for analyzing the algorithms are summarized in Table VI. For instance,
for our sample relations in Table I we obtain |R| = 3, |S| = 4, ρ = 4

3 ≈ 1.33, θR = 2,
θS = 3, and λ = 3

2 = 1.5, i.e., the sets in relation S are 50% larger than the sets of
R.

Note that in our model the selectivity2 of the join R � S can be varied using the
parameters θR, θS , and |D|. As we show in Appendix D, the expected selectivity is
θS!(|D|−θR)!
(θS−θR)!|D|! . For instance, for θR = 2, θS = 3, and |D| = 8, we obtain the selectivity

of 3!(8−2)!
(3−2)!8! ≈ 0.11. That is, the expected number of joining tuples for relations R

and S having 3 and 4 tuples each (like those in Table I) is 0.11 · 3 · 4 ≈ 1.3. If D
is large, the selectivity is almost zero. For example, for |D| = 1000, θR = 10 and
θS = 20, the selectivity is below 10−18, i.e., a join between R and S with a billion
tuples each is expected to return just one tuple.

Boolean hash functions. Both in APSJ and ADCJ we use monotone boolean
hash functions to partition the relations. In our analysis, we consider a subclass of
monotone boolean hash functions with the following two properties. First, each of
the functions hi fires independently of the others. Second, the firing probability of
each hi for a set s is P (hi(s)) = 1−p|s|, where p ∈ [0, 1]. In our testbed, we construct
the functions with the above properties using a so-called bit-string technique, as
illustrated in Section 2.3. That is, for each given set s of fixed cardinality |s| we
compute a bit string3 of length b. For each element x ∈ s, we set a bit in the

2For two relations R and S, the selectivity of the join R � S is the fraction of elements in the
cross-product R × S that participate in the join.
3We use the term bit string instead of signature to avoid ambiguity. Although the bit strings are
computed in the same way as signatures, they are not related to the signatures stored in partitions
in any way.
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bit string at position (hash(x) mod b). (In general, we apply some simple hash
function hash to x before taking modulo to ‘smooth out’ the element domain.) If
the set elements are drawn uniformly from a large domain, the probability of each
bit to be one is 1 − (1 − 1

b )|s|. Let function hi fire whenever bit i is set in the
bit string. Thus, we obtain b functions h1, . . . , hb that fire with equal probability
P (hi(s)) = 1 − (1 − 1

b )|s| = 1 − p|s|. For example, for b = 200 and |s| = 100 we
obtain 200 functions that fire with a probability of 1 − (1 − 1

200 )100 ≈ 0.4. By
varying b, we can approximate any given probability between zero and one.

In both APSJ and ADCJ we select a subset of the available b hash functions to
do the partitioning. If the number l of the selected functions is much smaller than
b, and b is much smaller than the size of the domain, i.e., l � b � |D|, then the
selected l functions fire (roughly) independently from each other. As we show in
Appendix A, even if l is close to b, our analysis presented below remains accurate.
In the appendix we also demonstrate that the bit-string technique produces enough
functions to use in APSJ and ADCJ.

3.1 Analysis of APSJ

APSJ uses k − 1 = l monotone boolean hash functions to partition relations R and
S into k partitions. Each hi fires with probability P (hi(r)) = 1 − pθR for sets of
R and with probability P (hi(s)) = 1 − pθS for sets of S. Recall that each set r
of relation R is assigned to exactly one of partitions R0, R1, . . . , Rl based on the
index of a randomly chosen function hi with hi(r) = 1. If none of h1, . . . , hl fires,
r is assigned to R0. Since hi are independent, the probability of all of hi to remain
silent for a random r ∈ R is

∏l
i=1(1 − P (hi(r))) = pθRl. Hence, the expected

number of signatures in partition R0 is |R| · pθRl. The rest of the signatures are
distributed uniformly over partitions R1, . . . , Rl. In other words, each Ri contains
on average |R|−|R0|

l = 1
l (1 − pθRl)|R| signatures. Each set s ∈ S is assigned to all

Si such that hi(s) = 1, and, additionally, to the ‘default’ partition S0. That is,
S0 contains all of S, i.e., |S0| = |S|. The probability of hi to fire for a random
set s ∈ S is P (hi(s)) = 1−pθS . Thus, each of S1, . . . , Sl has on average (1−pθS)|S|
signatures.

Now the comparison factor for APSJ can be computed as compAPSJ =
∑ l

i=0 |Ri|·|Si|
|R|·|S| =

|R|·pθRl·|S|+l· 1l (1−pθRl)|R|·(1−pθS )|S|
|R|·|S| = pθRl +(1−pθRl) · (1−pθS) = 1−pθS +pθRl+θS .

The comparison factor is minimized4 when p = popt =
(

θS

θS+θRl

) 1
θRl

. Substi-

tuting λ = θS

θR
, we obtain popt =

(
λ

λ+l

) 1
θRl

. Inserting popt in the formula for

compAPSJ yields compAPSJ = 1 − l
l+λ ·

(
λ

λ+l

)λ
l

. Since l = k − 1, we get compAPSJ =

1 − k−1
k−1+λ ·

(
λ

λ+k−1

) λ
k−1

.

4We minimize the comparison factor since the number of signature comparisons grows quadrati-
cally with the relation sizes and is the key performance penalty. Additional gains could be achieved
by minimizing both factors simultaneously exploiting the known CPU and I/O performance char-
acteristics.
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Algorithm Comparison and replication factors

PSJ
compPSJ = 1 − (1 − 1

k

)θS

replPSJ = 1
1+ρ

+ ρ
1+ρ

k(1 − (1 − 1
k
)θS )

APSJ
compAPSJ = 1 − k−1

k−1+λ
·
(

λ
k−1+λ

) λ
k−1

replAPSJ = 1
1+ρ

+ ρ
1+ρ

·
(

k − (k − 1)
(

λ
k−1+λ

) λ
k−1

)

ADCJ
compADCJ =

(
1 − 1

1+λ

(
λ

1+λ

)λ
)log2 k

replADCJ = replADCJ(λ, k, ρ) (see Algorithm 1)

Table VII. Summary of replication and comparison factors for PSJ, APSJ, and ADCJ

The replication factor is determined as replAPSJ =
∑ l

i=0 |Ri|+|Si|
|R|+|S| = |R|+∑ l

i=0 |Si|
|R|+|S| =

|R|
|R|+|S| + |S|

|R|+|S| · (1 + l · (1 − pθS)). Since ρ = |S|
|R| , we obtain replAPSJ = 1

1+ρ +
ρ

1+ρ(1+ l · (1−pθS)). Substituting p by popt, and l by k−1 finally yields replAPSJ =

1
1+ρ + ρ

1+ρ ·
(

k − (k − 1)
(

λ
k−1+λ

) λ
k−1
)

.

3.2 Analysis of ADCJ and PSJ

In Appendix B we derive the comparison and replication factors for PSJ. For ease of
reference, compPSJ and replPSJ are listed in Table VII. The contribution of ADCJ
is an optimized pattern according to which operators α and β are applied. In
Appendix C we derive the comparison factor of the divide-and-conquer approach
and demonstrate that it is independent of the operator pattern. As a consequence,
the comparison factor of ADCJ (shown in Table VII) is equivalent to that of DCJ.
The replication factor for ADCJ is hard to analyze and cannot be described using a
closed formula. This is unfortunate, since estimating the comparison and replication
factors is essential for choosing the best algorithm for the given input relations, as
we discuss in Section 6. To overcome this limitation, we provide an algorithm that
can be used for computing replADCJ (see Algorithm 1). The algorithm computes
numerically the expected sizes of all partitions (just as we explained in Section 2.4),
and adds up their sizes to obtain the replication factor.

Notice that the formulas for the comparison and replication factors of PSJ depend
directly on the set cardinality θS . In contrast, the formulas for APSJ and ADCJ
depend only on the ratio λ = θS

θR
. This initial observation suggests that APSJ and

ADCJ should be able to deal with large sets more effectively than PSJ.

4. QUALITATIVE COMPARISON OF THE ALGORITHMS

In the remainder of this paper, we will explore three aspects that are important for
understanding and comparing the performance of the algorithms that we presented:

—First, we examine what the formulas that we derived in the previous sections
tell us. In Section 4.1, we provide a qualitative estimate of how each of the
algorithms performs with the increasing number of partitions, different relation
sizes, or varying set cardinalities.

—Second, we investigate the accuracy of the predictions of our formulas. In Sec-
tion 4.2, we demonstrate how the actual comparison and replication factors devi-

ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.



14 · S. Melnik and H. Garcia-Molina

50 100 150 200 250
k

0.2

0.4

0.6

0.8

1

comp

ADCJ: ��
S

�
R

APSJ: ��
S

�
R

PSJ: �� ���
S

�
R

PSJ: �� ����
S

�
R

PSJ: �� �����
S

�
R

Fig. 4. Comparison factor vs. k

200 400 600 800 1000
   

0.2

0.4

0.6

0.8

1

comp

�
S

�
R
=100 PSJ

ADCJ

APSJ

Fig. 5. Comparison factor vs. θS (k =
128)

ate from the predicted values under different distributions of element values and
set cardinalities.

—Finally, we explore the behavior of the algorithms in an implemented system.
In Section 6, we show how the algorithms perform in practice, and demonstrate
how our analytical model helps to find operational values for the algorithms.

4.1 Understanding the formulas

Comparison factor. First, we illustrate the reduction of the comparison factor
with the growing number of partitions. All comparison factors in Table VII are
determined by the parameters θR, θS , and k. In Figure 4, we depict compAPSJ,
compADCJ and compPSJ for three containment join problems that correspond to the
set cardinalities θR = θS = 10, θR = θS = 100, and θR = θS = 1000. Since compDCJ

is equivalent to compADCJ, we will not consider compDCJ separately. Because ADCJ
and APSJ depend on the ratio λ of set cardinalities only, and λ = 1 in all three
cases, the three curves for each of these algorithms fall into one, depicted as a thick
solid line. As can be seen in the figure, all comparison factors decrease steadily with
growing k. However, the benefit of PSJ diminishes for large set cardinalities. For
example, for k = 128 and θR = θS = 1000, PSJ is ineffective (with compPSJ ≈ 1),
while ADCJ requires 13% of comparisons as opposed to the full cross-product,
and APSJ only 4.5%. On the other hand, for small sets like θR = θS = 10, PSJ
outperforms ADCJ in the number of comparisons starting with k ≈ 40. As a matter
of fact, as k grows, PSJ eventually catches up even with APSJ at k ≈ 213 (not
shown in the figure). However, as we explain below, replication overhead increases
with k, limiting the maximal number of partitions that can be used effectively for
computing the join.

Figure 5 demonstrates how the comparison factor increases with the growing
cardinality of sets in relation S. We fix the set cardinalities in R at θR = 100 and
vary the set cardinalities5 in S from θS = 10 to θS = 1000 for a constant number
of partitions k = 128. Note that varying θS corresponds to varying λ from 0.1 to
10. As illustrated in Figure 5, compADCJ remains below compPSJ as the cardinality
ratio grows (although not shown in the figure, compADCJ < compPSJ holds for all

5When θS < θR = 100, then the result of the join is known to be empty.
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θS > 1000).
Moreover, in all scenarios, even those in which initially compADCJ > compPSJ,

ADCJ (as well as APSJ) will eventually catch up and outperform PSJ as θS in-
creases6. For example, starting with θR = θS = 10, and k = 64, we obtain
0.18 ≈ compADCJ > compPSJ ≈ 0.15. Still, as θS grows, ADCJ catches up with
PSJ at θS ≈ 110, resulting in a comparison factor of 0.82 (at the same time,
compAPSJ ≈ 0.39). Overall, for any k > 2, APSJ requires less comparisons than
ADCJ (assuming large element domains).

Replication factor. We examine the replication factor for the same settings as we
utilized in the discussion of the comparison factor. Note that the replication factor
depends on the ratio ρ of the relation sizes. We start with the case where |R| = |S|,
i.e., ρ = 1. Figure 6 shows the growth of the replication factors replAPSJ, replADCJ,
and replPSJ with the increasing number of partitions for the cases θS = θR = 10,
θS = θR = 100, and θS = θR = 1000. Factors replAPSJ and replADCJ depend
only on the ratio of the set cardinalities; thus we obtain just one curve for APSJ
and another one for ADCJ. Furthermore, both curves are almost identical for the
settings of Figure 6 (the curve for DCJ is very close to that of ADCJ and is not
shown in the figure). Notice that replADCJ and replAPSJ outperform replPSJ even
for θR = θS = 10. For larger sets, like θR = θS = 100, and k = 128, PSJ
needs to write out 35 · (|R| + |S|) signatures as partition data. This is 10 times
more data to be stored temporarily than that generated by APSJ and ADCJ.
Notice, however, that replPSJ is bound by 1

1+ρ + ρ
1+ρ · θS (to see this, note that

limk→∞ k(1 − (1 − 1
k )θS ) = θS). In contrast, replADCJ and replAPSJ are unbound

with growing k. This observation suggests that for any given θR and θS , there is a
breakeven k, starting from which replPSJ becomes smaller than replADCJ or replAPSJ.
For large sets, such k may be so enormous that the fact that PSJ is bound and
ADCJ/APSJ are not is practically irrelevant. For example, for θR = θS = 1000,
replADCJ becomes as large as the maximal value of replPSJ (0.5 + 500 = 500.5), when
k ≈ 236. Since factor replADCJ grows faster with increasing k than replAPSJ, APSJ
eventually catches up and outperforms ADCJ starting from any setting. However,
the breakeven value of k may be high, especially for large λ. For example, for
λ = 10, APSJ does not catch up with ADCJ until k ≈ 216.

The impact of the set cardinality ratio on the replication factor is demonstrated
in Figure 7. Again, we fix k = 128, θR = 100, and vary θS from 10 to 1000.
Correspondingly, λ ranges from 0.1 to 10. Notice that replADCJ, and even replDCJ

eventually win over replAPSJ. Moreover, not only replADCJ outperforms replDCJ,
but, surprisingly, replADCJ peaks at some value of λ and starts decreasing from
that point on. In Figure 7, the peak replication for ADCJ (5.8) is produced at
λ ≈ 4.8, or θS ≈ 480. Notice that replication factor of 5.8 is still 30% better than
the corresponding values for APSJ (8.47) or DCJ (8.9).

Figure 8 illustrates the benefit of using ADCJ when the superset relation S is
larger than the subset relation R. Notice that the replication factors of PSJ, APSJ,
and DCJ increase with growing ρ, whereas replADCJ decreases starting from ρ = 1,
and, in fact, approaches 1 as ρ continues to grow. Although replPSJ saturates

6This fact can be derived from formulas in Table VII.

ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.



16 · S. Melnik and H. Garcia-Molina

50 100 150 200 250
k

10

20

30

40

repl

APSJ, ADCJ: ��
S

�
R

PSJ: �� ���
S

�
R

PSJ: �� ����
S

�
R

PSJ: �� �����
S

�
R

Fig. 6. Replication factor vs. k

200 400 600 800 1000
   

5

10

15

20

repl

�
S

�
R
=100

PSJ

APSJ

ADCJ

DCJ

Fig. 7. Replication factor vs. θS (for
ρ = 1)

10 20 30 40
   

2

4

6

8

10

12

14
repl

APSJ

ADCJ

DCJ

	

PSJ: � �� ����
R S

PSJ: � �� ���
R S

Fig. 8. Replication factor vs. ρ (for λ = 1)

quickly, for larger sets the replication overhead of PSJ is still extremely high. For
larger values of λ and k, the curve for DCJ peaks at some ρ and starts decreasing
from that point on. However, for any setting, ADCJ always outperforms DCJ.

The qualitative analysis in this section suggests that for each of the partitioning
algorithms the comparison factor (and thus CPU load) decreases with growing k,
whereas the replication factor (and thus I/O overhead) increases. Consequently,
there is an optimal number of partitions k that minimizes the overall running
time for each of the algorithms. Furthermore, our analysis indicates that PSJ is
the algorithm of choice for very small set cardinalities (below 10 elements), while
APSJ and ADCJ start outperforming PSJ when the set cardinalities increase. In
most scenarios, APSJ yields the smallest comparison factor, whereas ADCJ may
outperform APSJ due to small replication factor for larger λ or ρ. In Section 6, we
present the experimental results that substantiate these observations.

4.2 Accuracy of analytical model

To study the accuracy of our formulas in realistic scenarios, we used synthetic and
real data. For generating the synthetic data, we used five different distributions
of element values, and five distributions of set cardinalities as listed in Table VIII.
Starting with the distributions that are close to the assumptions of our analytical
model, we gradually made them more and more distinct. Using simulations, we
studied both the individual impact of varying just the element distribution or just
ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.
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Case Element distribution Set cardinality distributions in R : in S

A uniform (5000, 10000√
12

) uniform (50, 10√
12

) : (100, 20√
12

)

B normal (5000, 1000) normal (50, 5) : (100, 10)
C normal (5000, 500) normal (50, 10) : (100, 20)
D normal (5000, 100) normal (50, 20) : (100, 40)

E uniform (5000, 200√
12

) uniform (50, 100√
12

) : (100, 200√
12

)

Table VIII. Element and set cardinality distributions characterized by mean µ and standard
deviation σ, which are denoted as pairs (µ, σ).

the set cardinality distributions, as well as the combined effect. We discuss this
study in more detail in Appendix E. Experiments on real data are presented in
Section 6.

In summary, we found that for a variety of set cardinality distributions the for-
mulas of Table VII (including Algorithm 1 for ADCJ) deliver relatively accurate
predictions that lie within 15% of the actual values, as long as the element domains
are at least 10 times larger than the average set cardinalities and a large number
of domain elements is used in the sets. Our predictions deviate more from actual
values when the domain size |D| approaches the average set cardinalities θR and θS .
In our study, the selectivity of the joins ranged from 3.4 ·10−107 to 3.6 ·10−2. When
the join selectivity is high, the execution time of either algorithm is dominated by
the retrieval of the joining tuples.

Across all experiments we observed that APSJ and ADCJ tend to be more neg-
atively affected by varying the distributions than PSJ. This effect is mainly at-
tributed to problems with the generation of the boolean hash functions. Recall
that for APSJ and ADCJ to work optimally, we need to generate hash functions
that fire with a certain fixed probability. The smaller the element domain, the
worse the bit-string approach approximates the required probabilities.

5. TESTBED

We implemented the set containment join operator in Java using the Berkeley DB
as the underlying storage manager. In our implementation, each tuple of the input
relations R and S consists of a tuple identifier, a set of integers stored as a variable-
size ordered list, and a fixed-size payload. The payload represents other attributes
of the relations. To provide a fair evaluation of different partitioning algorithms,
we implemented the set containment join operator in such a way that just the
actual partitioning algorithm can be exchanged, other conditions remaining equal.
In Appendix G we document the Java implementations of each of the algorithms
APSJ and ADCJ as deployed in our testbed.

For conducting our experiments we used a more flexible and accurate evaluation
testbed than the one deployed in [Melnik and Garcia-Molina 2002]. To improve the
accuracy of measurements we specifically addressed the issues of I/O caching done
by operating systems and monitoring Java memory usage. OS caching effectively
makes the data on the secondary storage be loaded into the main memory, distorting
the I/O characteristics of the experiments, and is hard to control. In [Melnik and
Garcia-Molina 2002], we minimized OS caching by limiting the total amount of
OS memory. In the current testbed, we modified and recompiled the kernel of the
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Linux OS to completely disable read caching and prefetching7. To eliminate the
OS caching of write operations, we mounted the disk in a synchronous mode.

The second issue that we addressed is the memory usage of the Java Virtual
Machine, which is hard to measure and to control, not least due to its automatic
garbage collection. We implemented our own memory monitor that is explicitly
called throughout the code on allocating and deallocating memory and counts the
actual number of bytes used for signatures and tuples.

Every join computation runs within a fixed memory window. Its size can be
chosen independently from the database cache size. In the partitioning phase,
the memory window is divided equally among each partition. Once a partition’s
memory share fills up, it is written out to disk. In the joining phase, partitions Ri

and Si are joined using the available memory window. If Ri and Si do not fit into
the memory window, they are divided into blocks of half the window size and are
joined blockwise in a nested loop. The IDs of the candidate tuples are written out
to disk or kept in a special memory buffer, as explained below.

We experimented with two verification procedures called verify-disk and verify-
mem. In verify-disk, we generalized the technique used in [Ramasamy et al. 2000] in
order to cope with limited memory. In the joining phase, just as in [Ramasamy et al.
2000], the IDs of the candidate tuples are written out to disk. In the verification
phase, if all candidate tuples of R do not fit into the available memory window, we
read the tuple IDs of R and S blockwise, sort them in memory to achieve sequential
reads, and fetch the tuples to be verified in each block. To estimate dynamically the
maximal number of signatures and tuples that can be read into the memory window,
we store with each signature the size of the corresponding set. Thus, after reading
n signatures we can determine the memory needed to hold their respective tuples.
To minimize the storage overhead, the set size is approximated by its upper bound
using a two-exponent stored in a single byte. For example, value 10 stored with the
signature means that the respective set contains at most 210 = 1024 elements.

The second technique, verify-mem, was designed to reduce the verification time
in cases when the verification data is especially large and writing it out to disk
may be prohibitive. The key idea is to avoid storing the candidate pairs on disk
completely. For this purpose, we utilize a fixed-size verification buffer that is used
during the joining phase to hold the candidate pairs and their tuples. In our testbed,
the verification buffer plays the role of the result buffer that is typically used in
commercial databases to hold the intermediate results of query operators. Every
candidate pair produced in the joining phase is appended to the verification buffer.
Once it fills up, the tuple IDs of R and S are sorted and the respective tuples are
fetched from disk. Thanks to the size estimates stored in the signatures, the tuples
are guaranteed to fit into the available verification buffer. After the verification
buffer has been ‘drained’, it is cleared and the joining phase resumes.

An added benefit of interlacing joining and verification in verify-mem is that the
first results become available much earlier than using a strictly ordered three-phase
technique. By increasing the verification buffer, the partitioning algorithms can
trade memory for speed, whereas the nested-loop joins are CPU-bound and cannot

7A more standard solution of mounting a disk as a raw device [Ramasamy et al. 2000] was not an
option since Berkeley DB (v4.0.14) does not support raw device access.
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exploit additional memory effectively.
We implemented two nested loop algorithms, which enumerate the complete

cross-product R × S, to contrast their performance with that of the partition-
ing algorithms. In the naive nested loop join, the subset predicate is evaluated
for each pair of sets. In the signature nested loop join, each pair of signatures is
tested for bitwise inclusion producing candidate pairs that need to be verified. The
nested loop algorithms run within a fixed memory window, just as the partitioning
algorithms.

Overall, our testbed provides an execution environment close to what a commer-
cial DBMS would see, except that it provides the flexibility to experiment with
different join algorithms and collect relevant execution data.

6. EXPERIMENTS

In this section, we illustrate the performance of the algorithms on real and synthetic
data sets. The real data sets help us study the effectiveness of the algorithms
for distributions of set elements and cardinalities that can be found in practical
applications. Using synthetic data we explore the behavior of the algorithms for a
variety of settings and illustrate the performance trends.

First, we compare the performance of APSJ and PSJ and that of ADCJ and
DCJ using the data gathered in the Stanford WebBase project. We highlight a
challenging issue that is due to using signatures and is common to all partitioning
algorithms. After that, we discuss the experiments on the weblog and SWISSPROT
data, and illustrate the performance trends of the new algorithms using synthetic
data. For conducting the experiments we used a 1.6 GHz machine with 512 MB of
memory and an IDE disk that provided a read bandwidth of 13 MB/s and a write
bandwidth of 0.93 MB/s.

WebBase data: outlinks-200. In this experiment we used the data gathered in the
Stanford WebBase project [Hirai et al. 2000]. We used a snapshot of the WebBase
repository containing about 100 million web pages to find web directories that are
not subsumed by other, larger directories. We considered a web page to be a
directory if it contains at least 200 outgoing links. More than 100K pages in the
repository satisfied this condition. We created a relation R(id, outlinks) that
contains one tuple for each directory page. The set-valued attribute outlinks
holds the identifiers of all pages referenced by the page id. Each page identifier
is represented as a 32-bit integer. To find the subsumed directories, we perform a
self-join R �⊆ R.

The relation R with |R| = 109949 and average set cardinality θR = 224 contains
a total of 93 MB of raw data. This raw data was stored in a 160 MB Berkeley DB
database file (72% B-tree overhead). The size of the result |R �⊆ R| is 1672579,
i.e., the join selectivity amounts to 1.4 · 10−4. The signature size of 160 bits used
in the experiment yielded ca. 3.5 million pairs of tuple IDs to be verified, i.e., an
average of 1.1 false positives for a matching pair.

Figures 9 and 10 depict the execution times of PSJ and APSJ for the above
setting, which we refer to as outlinks-200. The execution time of each phase is
shown in stacked columns. The database cache size and the memory window were
set to 32 MB each. The verify-disk technique was used.The average set cardinality
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Fig. 9. PSJ on outlinks-200 data
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Fig. 10. APSJ on outlinks-200 data
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Fig. 11. Comparison and replication factors in outlinks-200

needed for setting the parameters of APSJ were obtained by sampling 1% of the
relations. Each data point was obtained as an average of three ‘cold’ runs.

The figures illustrate the case in which PSJ is virtually ineffective due to large
set cardinalities. To understand the performance graphs better, consider the actual
comparison and replication factors obtained in this experiment that are shown in
Figure 11 (on the vertical axis, comp ranges from 0 to 1, whereas repl ranges from
0 to 100). As predicted by the formulas of Table VII, compPSJ starts dropping
substantially only from k ≥ 128, where compk=128

PSJ ≈ 0.82. However, replk=128
PSJ

soars to around 53, wiping out the gains of the reduced CPU time. The value of
compk=1024

PSJ ≈ 0.19 is comparable to compk=16
APSJ ≈ 0.22, i.e., the CPU load of APSJ

in the joining phase at k = 16 is approximately equal to that of PSJ at k = 1024.
However, the joining phase of APSJ takes only 230 sec, whereas that of PSJ takes
2280 sec, almost ten times as much. The difference is due to two major factors: the
overhead required for reading a much larger amount of partitioning data and an
increased fragmentation of the partitioning data due to a large number of partitions.

The performance graphs of ADCJ and DCJ for outlinks-200 are almost identical,
since the ratio ρ of relation cardinalities is 1 (we omit the graphs for brevity).
Both perform slightly worse than APSJ. For comparison, the execution times of
the naive nested loop join and the signature nested loop join are shown as dotted
lines in Figures 9 and 10. The naive nested loop join on outlinks-200 requires more
than one hour, i.e., seven times longer than APSJ at k = 128.
ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.
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Fig. 12. DCJ on outlinks-150 data
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Fig. 13. ADCJ on outlinks-150 data

WebBase data: outlinks-150. To illustrate a case in which ADCJ does outperform
DCJ, we conducted another experiment called outlinks-150. In this experiment, a
web page is considered a directory if it contains at least 150 outgoing links. A
total of |S| = 341967 pages satisfy this condition. Now imagine that our goal is
to find ‘new’ directories in a subsequent crawl, e.g., those that have been added or
modified since the previous crawl and whose outlinks are not completely covered
by an existing directory. We extracted |R| = 12400 ‘new’ directories to be tested
for the subset condition against the ‘old’ ones. The tuples of R were obtained as a
random sample taken from S. Notice that |R| < |S| with ρ ≈ 27. According to the
analysis of Section 4.1, in this case ADCJ should outperform DCJ.

Figures 12 and 13 depict the execution times of ADCJ and DCJ for outlinks-150,
using the same configuration as in outlinks-200. The result size |R �⊆ S| is 288953,
with 570K pairs to verify. For each k, ADCJ outperforms DCJ due to a smaller
replication factor. For example, at k = 128, replk=128

DCJ ≈ 4.39 yielding the total of
88 MB of partitioning data to be generated. In contrast, replk=128

ADCJ ≈ 1.55, with
only 30 MB of partitioning data. Since replADCJ grows slower than replDCJ, ADCJ
can leverage the CPU-time savings at a larger k more effectively. So, the optimal
execution time of ADCJ is reached at k = 256, whereas DCJ starts degrading after
k = 32. In outlinks-150, the running time of APSJ is slightly worse than that of
ADCJ and DCJ, while PSJ is ineffective (the graphs are omitted for compactness).
The running times of the signature nested loop and the naive nested loop lie at 800
sec and 1460 sec, respectively, out of range of the graphs.

The above experiments illustrate that the adaptive partitioning schemes of APSJ
and ADCJ reduce CPU load by keeping the replication factor low. Moreover,
smaller replication means that the total execution time is less sensitive to the choice
of the number k of partitions, a critical parameter of all partitioning algorithms.
For example, for 64 ≤ k ≤ 1024, the respective running times of APSJ (Figure 10)
and ADCJ (Figure 13) vary only insignificantly.

Weblog data. The ‘outlinks’ experiments hint to another major challenge in using
the partitioning algorithms, in addition to choosing a good k. Notice that in both
experiments the verification phase, in which the final result is obtained, constitutes
a large fraction of the total execution time. In outlinks-200, it dominates the join
computation. In outlinks-150, the percental gains of ADCJ over DCJ are reduced
substantially due to verification. The above experiments suggest that in a case when
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Fig. 14. PSJ on weblog data
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Fig. 15. APSJ on weblog data

the join result is very large, the verify-disk procedure may become prohibitively
expensive. In this subsection, we study the impact of large results in more detail
and illustrate the benefits of the verify-mem technique.

We conducted an experiment using the weblog data gathered by the web server
of the C.S. department at Leipzig University, Germany over the past two years.
In the weblog experiment, we identify website users who viewed a subset of pages
visited by other users. Such information can, for example, be utilized by a rec-
ommendation system that suggests to the visitors potential pages of interest. The
relation S contains sets of pages visited from each IP address, represented as 32-bit
integers. To factor out non-representative users and obvious search engine accesses,
we discarded all sets that contain less than 5 or more than 1000 elements. Thus,
we obtained |S| = 182144 different sets with an average cardinality of θS = 28. For
populating the relation R, we picked only those users coming from the .de domain,
approximating the German website visitors, a possible target group of the recom-
mendation system. We obtained |R| = 41781 with θR = 36. Thus, the join R �⊆ S
has the parameters λ ≈ 0.77 and ρ ≈ 4.43.

The result of the join contains 21.5 million pairs, i.e., the join selectivity is rel-
atively high at 0.003. For a signature size of 160 bits, 87.8 million pairs to verify
need to be stored on disk. This verification data consumes approximately 1.06 GB
of disk space. The time required for writing and reading this data, and for fetch-
ing the candidate tuples is around 50 min, making all partitioning algorithms that
use the verify-disk technique perform worse than a naive nested loop join, which
takes 41 min. Furthermore, storing a gigabyte of temporary data may cause a disk
overflow even on modern hardware. The relations R and S utilize 10 MB and 32
MB on disk, respectively. To make the available memory smaller than the database
size, we set the database cache and memory window to 4 MB each. The verification
window, or result buffer, was set to 28 MB, enough to keep around 1.5% of the join
result on average (the buffer was filled around 70 times during joining).

Figures 14 and 15 depict the execution times of PSJ and APSJ on the weblog
data using the verify-mem technique. In case of APSJ the complete result can be
produced in less than 15 min. Although the fraction of the verification time is still
substantial, it lies far below 50 min needed for verify-disk. PSJ turns out to be
ineffective due to quickly growing replication, just as in the outlinks experiments.

Another way of reducing the number of false positives is to increase the signature
ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.



Adaptive Algorithms for Set Containment Joins · 23

0

500

1000

1500

2000

2500

40 80 160 240 400 800

signature size (in bits)

e
x
e
c
u

ti
o

n
ti

m
e

(i
n

s
e
c
) verify

join

partition

naive nested loop

Fig. 16. Execution time vs. signature
size (APSJ, k = 64)
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Relation Size Avg. set cardinality Max. set cardinality DB file size

Author 146935 11 7423 12.6 MB
Gene 83485 2 512 2.5 MB
Organism 4834 190 8002 4.35 MB

Table IX. Relations extracted from the SWISSPROT database

size. In the weblog experiment, we could confirm the results of [Ramasamy et al.
2000] that the choice of the signature size does not impact the performance of the
partitioning algorithms significantly. Figure 16 shows the execution time of APSJ
with k = 64 for signature sizes ranging between 40 and 800 bits. Notice that
the horizontal axis is quasi logarithmic. The overall performance remains roughly
the same for signature sizes between 160 and 400 bits. Although the number of
false positives drops with the growing signature size (see Figure 17), the size of
partitioning data and the CPU time for signature comparisons increase.

SWISSPROT data. For completeness, we present a scenario that is not favorable
to our new algorithms. We downloaded the SWISSPROT database8, which contains
detailed information about 110000 proteins. From this data we extracted three
relations that are summarized in Table IX. Each relation has the signature R(id,
proteins). In the relation Author, each set represents the proteins studied by
an individual researcher, i.e., those that appear in his or her publications. In the
relation Genes, each set contains the proteins that a given gene codes for. The
relation Organism contains sets of proteins grouped by classes of organisms such as
humans, primates or bacteria.

Using these three relations, six set containment joins in total can be performed.
These are listed in Table X. For example, experiment (II) allows us to identify
all researchers who published about each protein of a given organism. These re-
searchers are likely to have specific interest and expertise in certain species. We
used the same memory settings as in the weblog experiment (4 MB cache, 4 MB
memory window, 28 MB verification buffer). The signature size of 400 bits was
used in (IV) and (VI) because of large set cardinalities of the superset relation
Organism. In all other experiments, the signature size was set to 160 bits.

8Available online at http://www.expasy.org/sprot/, release 4.0
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Experiment Joined relations Result size Selectivity λ ρ

I Organism �⊆ Gene 1477 3.6 · 10−6 0.01 17.3
II Organism �⊆ Author 8923 1.3 · 10−5 0.058 30.6
III Author �⊆ Gene 120904 9.8 · 10−6 0.18 0.56
IV Author �⊆ Organism 1273889 1.7 · 10−3 17.3 0.33
V Gene �⊆ Author 2343579 1.9 · 10−4 5.5 1.77
VI Gene �⊆ Organism 624291 1.5 · 10−3 95 0.058

Table X. Experiments performed on SWISSPROT data

Algorithm I II III IV V VI

APSJ 60 140 860 480 1200 270
ADCJ 70 155 770 1100 4200 1040
PSJ 30 175 100 510 1300 250

nested loop 120 230 3200 330 1800 170

Table XI. Best times of SWISSPROT experiments (in sec)
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Fig. 18. Comparison factor in (II)
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Fig. 19. Replication factor in (II)

The best execution times obtained for each algorithm and each experiment are
summarized in Table XI. For each experiment, we ran each algorithm for k = 2l,
l = 1, . . . , 9 and picked its best execution time. The top times in each experiment
are highlighted in bold. In experiments (I) and (III), the set cardinalities of the
superset relation Gene are extremely low (around 2), making PSJ the algorithm
of choice. In (II) and (V), APSJ wins due to less replication, despite the fact
that its comparison factor deviates substantially from the values predicted by the
formula of Table VII. Although in general the non-uniform distributions affect the
performance of the algorithms negatively (as in Figure 18), in some cases, such as
case (V) illustrated in Figures 20 and 21, the actual values turn out to be better
than the predicted ones.

In cases (IV) and (VI), the partitioning algorithms loose to the naive nested loop
join. One reason for that is a large number of false positives. In (IV), 50 million
false positives are produced on average for 1.2 million tuples in the result, whereas
in (VI) the ratio is 30 million to 620 thousand. Just as in the weblog experiment,
increasing the signature size does not reduce the running time noticeably due to
growing replication data and CPU load of signature comparisons.

The high number of false positives can be explained by the fact that the SWIS-
SPROT relations contain a significant fraction of very large and very small sets.
ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.



Adaptive Algorithms for Set Containment Joins · 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 8 16 32 64 128 256

number of partitions

c
o

m
p

a
ri

s
o

n
fa

c
to

r

APSJ predicted

APSJ real

PSJ real

PSJ predicted

ADCJ real

ADCJ predicted

Fig. 20. Comparison factor in (V)
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The large sets produce almost full signatures, which are likely to yield many false
positives. Nearly empty signatures are also prone to producing false positives. For
example, in (IV), given close to 80000 sets with only one element each, we get on
average 200 signatures with the same single bit set for a signature of 400 bits. We
think that processing the ‘large’ and ‘small’ sets separately, e.g., using a nested
loop join for those sets only, may help improve the overall performance. We do not
examine such a hybrid algorithm in this paper.

In this section, we have studied several scenarios. In some of them, our new
algorithms are the best, but in others they are not. An important question is
how we can choose the optimal operational values for each algorithm and decide in
practice which algorithm to use in which scenario. This question is the topic of the
next section.

7. CHOOSING OPERATIONAL VALUES OF ALGORITHMS

Finding an optimal number of partitions is essential for deploying the partitioning
algorithms effectively. In a real system, we cannot afford running the algorithms for
different values of k to determine the optimal k. The technique that we developed
in [Melnik and Garcia-Molina 2002] helps us predict the best operational values for
the algorithms and choose the best performing algorithm.

We approximate the running time of each algorithm using a function time(x, y, k),
where x = comp · |R| · |S| is the total number of comparisons, y = repl · (|R|+ |S|)
is the total number of signatures to be stored temporarily, and k is the number of
partitions. Notice that the join selectivity and the signature size are not included
in this function. To choose the parameters for time, we build upon the detailed
experimental results obtained for PSJ by Ramasamy et al. [2000]. As they reported,
with the growing number of partitions k, fragmentation becomes a significant factor,
which we need to take into account. In contrast, the authors demonstrate that the
exact choice of the signature size is less critical, as long as the signatures are large
enough so that none or very few false positives are produced. For predicting the
execution times, we are making an additional simplifying assumption that the join
selectivity is small, i.e., at most a few tuples are returned as a result. As illustrated
in Section 6, the partitioning algorithms spend a comparable additional amount
of time on verifying and reading out the result from the relations R and S. This
additional time does not need to be considered in the comparison of the algorithms.
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In [Melnik and Garcia-Molina 2002] we derive the equation for time using the
least-squares curve fitting method. We found that the function time(x, y, k) =
c1 · x + c2 · y · kc3 resulted in the smallest average error of all candidate functions
that we explored. The first part of the equation, c1 · x, represents the CPU time
required for signature comparisons. The second part, c2 · y · kc3 , represents the
I/O time for writing and reading the partitions, while kc3 reflects the negative
fragmentation effect that kicks in with growing k.

We think that in real systems it would be possible to automate the computation
of the time equation and the choice of the best algorithm. The time equation could
be obtained at configuration time of the system by generating a fixed number of
synthetic input relations R and S and obtaining the data points for different values
of k using algorithms APSJ, ADCJ, and PSJ. Then, the curve-fitting method could
be automatically applied to choose the equation that predicts the execution time
most accurately. After the equation is obtained, the hardware has been ‘calibrated’.
Then the equation can be used to predict the running time of actual joins that must
be run. Given the time equation, the decision what algorithm to select for two input
relations R and S can be made using the following steps:

(1) Determine the actual sizes of the relations and the average set cardinalities θR

and θS using available statistics or sampling.
(2) Estimate the comparison and replication factors using the formulas of Table VII

for a number of different values of k, for example for k = 2l, 1 ≤ l ≤ 13.
(3) Apply the time equation to determine the best execution times of each of the

algorithms for the above values of k using the estimated comparison and repli-
cation factors9.

(4) Find the best execution time and pick the algorithm that produced it along
with the optimal partition number k.

To illustrate the use of the above procedure in our testbed, consider Figures 22
and 23. The figures depict the predicted and the actual execution times obtained
for two synthetic relations |R| = |S| = 50000 (θR = 50, θS = 100) using the
algorithms ADCJ and PSJ. The time equation time(x, y, k) = 5.0824 · 10−7 · x +
7.3093 · 10−7 · y · k0.9162 was obtained by generating six synthetic relations and
‘calibrating’ the hardware on a 600 MHz Linux machine with 256 MB of memory.
For generating the synthetic relations, we used different combinations of the element
and set cardinality distributions of cases A and B of Table VIII.

In Step 1, the relation sizes were obtained by querying the relation metadata
maintained by Berkeley DB. The average set cardinalities were computed by sam-
pling 5% of the relations. In Steps 2 and 3, the predicted execution time was deter-
mined by first computing the comparison and replication factors using the formulas
of Table VII, and then inserting the corresponding values of x = comp · |R| · |S|
and y = repl · (|R|+ |S|) in the above time formula. Notice that in case of PSJ the
predicted optimal number of partitions (k = 512) matches the experimental value.
In contrast, the experimental optimal k for ADCJ is 1024, whereas the formula

9Since the formulas in Table VII are fairly complex, determining the optimal k analytically is hard.
Moreover, no closed formula for replADCJ is available. Therefore, we use the probing approach.
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Fig. 22. Execution times for
ADCJ (|R| = |S| = 50000, θR =
50, θS = 100)
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predicts k = 512. Even though the predicted k for ADCJ was less accurate, the
formula still provides a good estimate of the best execution time.

The predicted time depends on precise estimates of the comparison and repli-
cation factors and may be less accurate for highly correlated data. Furthermore,
as we illustrated in Section 6, non-uniform data may yield a large number of false
positives and a prohibitively expensive verification phase. To account for these
challenges in a real system, the execution of the partitioning algorithm picked in
Step 4 could be augmented as follows:

(5) After the partitioning is done, check the actual comparison and replication
factors. If the values are unexpectedly poor (e.g., comp is close to 1), fall back
to a nested loop join.

(6) If the actual factors match the predictions, run the joining phase for a fraction
of the total time, and then check how many false positives are obtained. If
there are prohibitively many false positives, switch to a nested loop join.

8. PERFORMANCE TRENDS

In addition to using our time equation at run time to select k and the algorithm
to run, we can use the equation to understand in what cases APSJ, ADCJ, or PSJ
perform best. For any given hardware configuration, the space of input relations
can be divided into areas where one of the algorithms outperforms the others. Fig-
ure 24 shows eight regions divided into areas where one of the algorithms excels.
Each region is composed of 100 discrete data points. Each point corresponds to a
particular data set characterized by four parameters θR, |R|, λ and ρ. The values
of parameters |R| (in thousands) and θR are depicted along the x-axis and y-axis,
respectively, while λ and ρ are kept constant for each region. To obtain Figure 24
experimentally, 31200 joins need to be executed. If each experiment takes on aver-
age 10 min, more than seven month of computation would be required. Therefore,
to illustrate the performance trends we used the time equation to determine the
algorithm that is likely to perform best at each point.

The top four regions were obtained using the time equation of Section 7 cali-
brated on a 600 MHz machine. For example, the top left region shows the areas of
excellence of the algorithms for λ = 1 and ρ = 1. As we can see, APSJ outperforms
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Fig. 24. Performance regions for APSJ, ADCJ, and PSJ for different hardware
settings

the algorithms ADCJ and PSJ starting from θR = θS = 6 for relation sizes up to
35000, and from θR = θS = 7 for relation sizes between 40000 and 50000. Although
not shown in the figure, APSJ continues outperforming the other algorithms for
larger θR. For example, for |R| = |S| = 20000, θR = θS = 100, APSJ is 11 times
faster than PSJ and twice as fast as ADCJ. Notice that ADCJ does not appear in
the top four regions at all. In fact, in this hardware configuration that we used,
ADCJ is always dominated by either APSJ or PSJ.

The bottom four regions show the performance regions for another two hardware
settings. In the ‘in memory’ setting, we configured our testbed to do in-memory
partitioning and calibrated the time equation as time(x, y, k) = 5.0824 · 10−7 ·
x + 3.6546 · 10−5 · y. Notice that c3 = 0 (and thus kc3 = 1), since there is no
fragmentation effect. In the ‘slow disk’ setting, we modified the time equation to
simulate quadratic fragmentation impact (reported in [Ramasamy et al. 2000]) and
a slow disk as time(x, y, k) = 5.0824 ·10−7 ·x+7.3093 ·10−6 ·y ·k2. In both settings,
when relation S is 100 times larger than R, ADCJ becomes the algorithm of choice
for smaller sizes of R. However, the gain of ADCJ over APSJ is just around 10%
(not shown in the figure). Surprisingly, in the in-memory setting ADCJ outperforms
APSJ by a larger margin. For instance, for the point |R| = 1000, |S| = 100000,
θR = θS = 10 (truncated in bottom right region), ADCJ is three times better than
APSJ and four times better than PSJ. Notice that in the ‘slow disk’ setting with
λ = 2, ρ = 0.01, none of the algorithms is effective for |R| < 20000 (blank area
in the region). In this case, relation S is very small (|S| = 0.01 · |R| < 200), and
the partitioning overhead makes each of the algorithms less effective than a nested
loop join. We observed this trend in the SWISSPROT experiments (IV) and (VI)
in Section 6, where the superset relation Genes was relatively small and the disk
was quite slow for a 1.6 GHz CPU.

By varying the time equation, we simulated several other hardware settings be-
yond the three shown in Figure 24. In all cases that we examined, either APSJ or
ADCJ outperforms PSJ when θR > 9, and in many other cases even if θR is smaller
than 9. In most configurations APSJ turns out to be the top performer for larger
ACM Transactions on Database Systems, Vol. 28, No. 2, 06 2003.
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sets. However, for smaller relations and large ρ, ADCJ wins over APSJ. Please
keep in mind that the results presented above are based on the assumption that
the element domains are large, the data is distributed relatively uniformly, and the
result size is small. As we demonstrated in Section 4.2, ADCJ may outperform
APSJ for a broader range of data sets if the element domain is small. Furthermore,
as we showed in Section 6, PSJ may win over ADCJ and APSJ if the data is highly
correlated; the nested loop may outperform all partitioning algorithms if the result
size and the number of false positives are very large.

9. RELATED WORK

The set containment join and other join operators for sets enjoyed significant at-
tention in the area of data modeling. However, relatively little work deals with
efficient implementations of these operators. Helmer and Moerkotte [1997] were
the first to directly address the implementation of set containment joins. They in-
vestigated several main memory algorithms including different flavors of nested-loop
joins, and suggested the Signature-Hash Join (SHJ) as a best alternative. Later,
Ramasamy et al. [2000] developed the Partitioning Set Join (PSJ), which does not
require all data to fit into main memory. They showed that PSJ performs signifi-
cantly better than the SQL-based approaches for computing the containment joins
using unnested representation. Prior to [Helmer and Moerkotte 1997] and [Ra-
masamy et al. 2000], the related work focused on signature files, which had been
suggested for efficient text retrieval two decades ago. A detailed study of signature
files is provided by Faloutsos and Christodoulakis [1984]. Ishikawa et al. [1993]
applied the signature file technique for finding subsets or supersets that match a
fixed given query set in object-oriented databases.

In [Melnik and Garcia-Molina 2002] we presented the Divide-and-Conquer Set
Join (DCJ) and the Lattice Set Join (LSJ) algorithms. LSJ is a partitioning al-
gorithm which extends the main-memory algorithm SHJ [Helmer and Moerkotte
1997]. We demonstrated that DCJ always outperforms LSJ in terms of the repli-
cation factor. In [Melnik and Garcia-Molina 2002] we developed a comprehensive
model for analyzing different partitioning algorithms that takes into account differ-
ent set cardinalities and relation sizes, and measures the efficiency of the algorithms
using the comparison and replication factors. In this paper, we used this analytical
model for studying our novel algorithms APSJ and ADCJ.

The adaptive algorithms presented in this paper introduce significant improve-
ment over PSJ and DCJ. In particular, ADCJ always outperforms DCJ due to
smaller replication factor, just like DCJ outperforms LSJ. In [Melnik and Garcia-
Molina 2002] we suggested for DCJ a fixed pattern for applying operators α and β,
which works reasonably well when the input relations R and S have approximately
equal sizes and the set cardinalities are approximately the same (i.e., ρ ≈ 1, λ ≈ 1).
In this paper, we compute the α,β-pattern adaptively based on the characteristics
of the input relations to minimize replication.

For brevity we do not discuss several aspects relevant for computing set contain-
ment joins. Examples are trading CPU time for I/O time by selecting the algorithm
and partition number appropriately, choosing the signature size optimally, or using
multi-stage partitioning (some of these aspects are examined in [Ramasamy et al.
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2000]). For generating synthetic databases used in our experiments, we deployed
the methods described in [Gray et al. 1994]. The inherent theoretical complexity
of computing set containment joins was addressed in [Cai et al. 2001; Hellerstein
et al. 1997]. Partitioning has been utilized for computing joins over other types of
non-atomic data, e.g., for spatial joins [Patel and DeWitt 1996]. A possible alter-
native to partitioning joins are index joins. Index-based approaches for accessing
multi-dimensional data were studied e.g. in [Böhm and Kriegel 2000].

10. CONCLUSION

We presented two novel partitioning algorithms, the Adaptive Pick-and-Sweep Join
(APSJ) and the Adaptive Divide-and-Conquer Join (ADCJ), which allow comput-
ing many set containment joins several times more efficiently than the previously
known approaches. We provided a detailed analysis of the algorithms and studied
their performance using an implemented testbed. We found that APSJ, ADCJ,
and the existing algorithm PSJ need to be used complementary for maximal per-
formance. PSJ is the algorithm of choice when the set cardinalities are very small,
e.g., below ten elements. For larger cardinalities, APSJ tends to outperform all
other algorithms. In some settings, especially in those where the superset relation
is much larger than the subset relation, or the element domain is small, ADCJ wins
over APSJ and PSJ.

By conducting experiments on real data, we identified a challenge common to
all partitioning algorithms, which has been underestimated in the previous work:
when the result sizes are large, or many false positives are produced in the joining
phase, the partitioning algorithms may become less effective than a naive nested
loop join.

The work presented in this paper suggests that set containment joins can be
computed quite efficiently when the set element domains are large. It would be
interesting to see whether the hash functions used in APSJ and ADCJ can be con-
structed optimally for small or non-uniform domains, or whether the algorithms
presented in this paper reduce the theoretical complexity of containment joins be-
low O(|R|·|S|). Additional performance improvement could be achieved by applying
a combination of different partitioning algorithms in several stages, e.g., first ADCJ
on disk, then APSJ in memory, or by using a hybrid algorithm suggested in Sec-
tion 6. Developing efficient algorithms for other set join operators, for instance the
intersection join, is another challenging research direction.
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A. ATOMIC MONOTONE FUNCTIONS AND BIT-STRING TECHNIQUE

Both in APSJ and ADCJ we use monotone boolean hash functions to partition the
relations. In this appendix we describe the subclass of the functions used in the
analysis of APSJ in more detail and show that the bit-string technique that we use
for generating the hash functions in our testbed provides enough functions to use
for partitioning in APSJ and ADCJ.

The algorithms APSJ and ADCJ work correctly with arbitrary monotone hash
functions (recall that we call h monotone if it satisfies the property that if h fires
for set s, it is guaranteed to fire for each superset of s). However, to facilitate
the analysis presented in Section 3, we consider a smaller class of functions for
which the decision whether h fires for s or not can be made by examining each
element of s one by one. We call such functions atomic.10 Each atomic monotone
function h can be described as h({x1, . . . , xn}) = g(x1)∨· · ·∨g(xn), where g is some

10If h is viewed as coloring of the lattice formed by the subset relation, each 1-colored node can
be traced down to an atom (i.e. set with just one element) over 1-colored nodes.
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(not necessarily monotone) boolean function. The firing probability of an atomic
monotone function can be determined as follows. Each function g decomposes
the domain D from which the set elements are drawn into two disjoint portions,
{x | g(x) = 1} and {x | g(x) = 0}. The probability that g does not fire for a
random set element x ∈ D is p = {x|g(x)=0}

|D| . If |D| is much larger than the set
cardinality |s|, then the probability of drawing an element x with g(x) = 0 in each
of |s| trials is constant and equals p. That is, the firing probability of h for set s is
P (h(s)) = 1 − p|s|.

In Section 3 we presented the bit-string technique that we use to construct b
atomic monotone hash functions that fire independently of each other with proba-
bility P (hi(s)) = 1 − p|s| = 1 − (1 − 1

b )|s|. Of these b functions, l are selected for
partitioning in APSJ. In Section 3.1, we relied on the assumption that the selected
functions fire independently of each other to compute the probability that all of
them remain silent. The independence assumption is satisfied when l � b � |D|.
In worst case, when all of b functions need to be used in APSJ (i.e. l = b), the prob-
ability that all b functions remain silent for set s is zero (the design of the functions
guarantees that at least one bit in the bit string will be set). Assuming indepen-
dence of the functions, the probability that no function fires is (1 − 1

b )b·|s| < e−|s|.
For |s| = 20, we have e−20 < 10−8, which is very close to zero.

When the hash functions are constructed using the bit-string approach, p = 1− 1
b .

In Section 3.1 we derive the optimal value popt that minimizes the comparison factor
for APSJ. That is, the length of the bit-string that we have to use for generating
the optimal hash functions can be computed as bopt = 1

1−popt
= 1

1−( λ
λ+k−1 )

1
θR(k−1)

.

For example, for θR = 50, θS = 100, and k = 64 partitions, we get bopt ≈ 905.
Since l = 63 < 905, we have a sufficient number of functions to choose from. In
fact, one can show that for any k ≤ 214 and 10 ≤ θR ≤ θS , the bit-string approach
gives a sufficient number of hash functions to be used by APSJ, i.e., bopt ≥ k − 1.
More generally, for any k ≤ 214 and 10 · v ≤ θR ≤ θS , we get bopt ≥ v · (k − 1), or
k − 1 ≤ bopt

v , i.e., for larger sets the functions fire more independently.

As we show in Appendix C, popt for ADCJ is determined as ( λ
1+λ)

1
θR . Conse-

quently, the value bopt that minimizes the comparison factor for ADCJ is computed
as bopt = 1

1−( λ
1+λ )

1
θR

. Again, one can show that for 10 ≤ θR ≤ θS , the bit-string

approach produces at least 14 functions to choose from, i.e., up to 214 partitions
can be used in ADCJ.

B. ANALYSIS OF PSJ

In PSJ, each set r of relation R is assigned to exactly one of partitions R1, . . . , Rk

based on a randomly chosen element of r. Since the elements of r are drawn
uniformly from a large domain, the probability that a given element x ∈ r yields
a certain partition number j is 1

k . Therefore, each partition Ri will contain on
average |R|

k set signatures. In contrast, all elements of a set s ∈ S are used for
determining the partition assignment for s. Again, the probability that a given
element x ∈ s yields a certain partition number j is 1

k . The probability that none
of θS elements of s yield partition number j is, therefore, (1 − 1

k )θS . Hence, the
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probability that at least one of the elements of s triggers the assignment of s to
partition Sj is 1 − (1 − 1

k )θS . In other words, the average number of signatures in
each partition Sj is (1 − (1 − 1

k )θS ) · |S|.
Each pair of partitions Rj � Sj results in |Rj | · |Sj| = |R|

k · (1 − (1 − 1
k )θS ) · |S|

signature comparisons. Multiplying this number by k and dividing by |R| · |S|
produces the comparison factor compPSJ = 1− (1 − 1

k

)θS . The replication factor is
the sum of all signatures in all partitions divided by |R| + |S|. Hence, we obtain

replPSJ = |R|+k(1−(1− 1
k
)θS )·|S|

|R|+|S| = |R|
|R|+|S| +

|S|
|R|+|S|k(1− (1− 1

k )θS ) = 1
1+ρ + ρ

1+ρk(1−
(1 − 1

k )θS ). Notice that both the comparison and replication factor grow with the
sizes of sets in S. For large θS , compPSJ ≈ 1, making PSJ ineffective.

C. COMPARISON FACTOR OF ADCJ

To partition relations R and S, ADCJ utilizes the operators α and β. Operator α
repartitions R � S into (R/h � S/h)∪(R/¬h � S) using a boolean hash function h.
That is, the number of comparisons required after applying α is |R| · |S| · (P (h(r)) ·
P (h(s)) + P (¬h(r)) · 1). Since P (h(r)) = 1− p|r|, and P (h(s)) = 1− p|s|, applying
α reduces the number of comparisons to |R| · |S| · ((1 − p|r|)(1 − p|s|) + p|r|

)
=

|R| · |S| · (1 − p|s| + p|r|+|s|).
Analogously, β repartitions R � S into (R/¬h � S/¬h) ∪ (R � S/h). Hence,

the number of comparisons required after applying β is |R| · |S| · ((1 − P (h(r))) ·
(1 − P (h(s))) + 1 · P (h(s))

)
= |R| · |S| · (1 − p|s| + p|r|+|s|). That is, by using a

hash function h, both α and β reduce the number of comparisons by a factor of
(1 − p|s| + p|r|+|s|). Since each pair of partitions Rj � Sj in assignments 1, . . . , l
is obtained by using either α or β, the resulting comparison factor is compADCJ =∏l

i=1(1 − p
|s|
i + p

|r|+|s|
i ).

We can minimize the comparison factor by designing the hash functions in a
certain ‘optimal’ way. The expression

∏l
i=1(1 − p

|s|
i + p

|r|+|s|
i ) is minimized when

p1 = p2 = · · · = pl =
(

|s|
|r|+|s|

) 1
|r|

, i.e., each of hi fires with the same probability. If

all sets of R and S have cardinalities θR and θS , we obtain pi =
(

θS

θR+θS

) 1
θR . Using

the cardinality ratio λ = θS

θR
, pi can be rewritten as pi = ( λ

1+λ )
1

θR . Furthermore,
since k = 2l, we have l = log2 k. Consequently, we obtain

compADCJ =
log2 k∏
i=1


1 −

(
λ

1 + λ

) θS
θR

+
(

λ

1 + λ

) θR+θS
θR


 =

(
1 − 1

1 + λ

(
λ

1 + λ

)λ
)log2 k

D. JOIN SELECTIVITY IN THE ANALYTICAL MODEL

Let the elements of sets in relations R and S be drawn uniformly from the domain
D, and the cardinalities of the sets in R and S be θR and θS , respectively. For two
relations R and S, the selectivity of the join R � S is the fraction of elements in the
cross-product R×S that participate in the join. In other words, the join selectivity
is the probability that r ⊆ s holds for any two randomly chosen sets r ∈ R and
s ∈ S. Imagine that we are examining each element of r, one after another, in a
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random order. For the first element that we select, the probability that we picked
one specific element of s is that of picking a specific element of D, i.e., 1

|D| . Since
|s| = θS , the probability that we picked one of the elements of s is θS

|D| . Now consider
the second element of r. The probability that we picked another specific element
of s is now 1

|D|−1 . Hence, the probability that as a second element we picked one
of the remaining θS − 1 elements of s is θS−1

|D|−1 . Analogously, for the third element
of r, we get θS−2

|D|−2 . Continuing this line of reasoning for all θR elements of r, we
obtain P (r ⊆ s) as a product of the probabilities that each element of r belongs to
s, i.e., P (r ⊆ s) = selectivity(|D|, θR, θS) = θS

|D| · θS−1
|D|−1 · · · θS−θR+1

|D|−θR+1 = θS!(|D|−θR)!
(θS−θR)!|D|!

(for θR ≤ θS).

E. ACCURACY OF ANALYTICAL MODEL

In this appendix we study the accuracy of the formulas for comparison and repli-
cation factors of APSJ and ADCJ (see Table VII) for different set cardinality and
set element distributions. The experiments described below are not implementa-
tion specific, and depend just on the content of relations R and S. We used five
different distributions of element values, and five distributions of set cardinalities.
These distributions are summarized in Table VIII (values generated from these dis-
tributions are rounded to get the discrete distributions we need). Starting with the
distributions that are close to the assumptions of our analytical model, we gradually
make them more and more distinct. For example, in case A the set elements are
drawn uniformly from the domain D = {0, . . . , 10000}. In other words, the element
distribution has the mean of 5000 and the standard deviation11 of 10000√

12
≈ 2886.

The cardinalities of sets in R are drawn uniformly from {45, . . . , 55}, whereas the
cardinalities in S are drawn from {90, . . . , 110}. Thus, case A is relatively close to
our assumptions that D is large and the sets in R and S have fixed cardinalities.
In contrast, case D illustrates a scenario in which the element values obey a normal
(Gaussian) distribution with standard deviation σ = 100. In other words, 95% of
element values are contained in the interval [µ− 2σ, µ + 2σ] = {4800, . . . , 5200}. In
case E, the element value domain is limited to just 200 elements. From A to E,
we gradually increase the variance of the cardinality distributions, culminating in
uniform distributions {0, . . . , 100} for S and {0, . . . , 200} for R.

Figures 25 and 26 illustrate the impact of the distributions used in cases A–
E on the predictions of our formulas. The graphs show the individual impact of
varying just the element distribution, or just the set cardinality distributions, or
both. For example, the bottom curve in Figure 25 (labeled ‘APSJ cardinality’)
illustrates how the actual comparison factor for APSJ becomes less accurate when
we vary the cardinality distributions and keep the element distribution uniform
with D = {0, . . . , 10000}. For each data point, we generated the test relations ten
times with |R| = 2000, |S| = 10000 and determined the average actual comparison
and replication factors for k = 128. The curve (‘APSJ element’) shows how the
comparison factor for APSJ deviates from the predicted value when we vary the
element distribution and keep the set cardinalities constant at θR = 50, θS = 100.

11The standard deviation of a uniform distribution over domain [a, b] is computed as b−a√
12

≈ b−a
3.46

.
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The solid curves illustrate the combined impact of varying both element and set
cardinality distributions.

Notice that the replication factor for APSJ and ADCJ matches the predicted
values accurately under all distributions that we use. The predictions for the com-
parison factors are precise for the cases A, B, and C. However, the negative impact
of the element distribution on comparison factors becomes significant when the do-
main size |D| approaches the average set cardinalities θR and θS . For example, in
case E the actual value of compAPSJ ≈ 0.55 exceeds by far the predicted value of
compAPSJ ≈ 0.08. In fact, compAPSJ becomes even larger than compADCJ ≈ 0.52,
much to the contrary of our prediction. In many scenarios we observed that the per-
formance of APSJ degrades significantly faster with shrinking element domains than
that of ADCJ. As we demonstrate in [Melnik and Garcia-Molina 2002], PSJ is even
less sensitive to varying distributions. Nevertheless, the gains of APSJ and ADCJ
often compensate for the increased number of comparisons that is due to varying
distributions. For example, in case E, we obtain compPSJ ≈ 0.61, replPSJ ≈ 63, i.e.,
in this scenario APSJ and ADCJ outperform PSJ with respect to both efficiency
measures.

As a final remark, notice that the selectivity of the joins rapidly increases from
case A to case E. For instance, for constant θR and θS and the element distribution
of case A, we obtain the selectivity of 3.4 ·10−107 using the formula of Appendix D.
In contrast, in case E (with constant θR and θS) we get a selectivity of 2.2 · 10−19,
which is larger by many orders of magnitude. Experimentally, we determined that
the selectivities in cases D and E (varying both element and cardinality distribu-
tions) are 7.3 · 10−5 and 3.6 · 10−2, respectively. When the join selectivity is high,
the execution time of either algorithm is dominated by the retrieval of the joining
tuples. Thus, the prediction accuracy of the comparison and replication factors
may be a less critical issue.

We did several additional experiments with different partition numbers and re-
lation sizes, which we omit here for brevity. Across all experiments we observed
that APSJ and ADCJ tend to be more negatively affected by varying the distri-
butions than PSJ. As we explained in Section 4.2, this effect is mainly attributed
to problems with the generation of the boolean hash functions. In summary, we
conclude that for a variety of set cardinality distributions the formulas of Table VII
(including Algorithm 1 for ADCJ) deliver relatively accurate predictions that lie
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within 15% of the actual values, as long as the element domains are at least 10 times
larger than the average set cardinalities and a large number of domain elements is
used in the sets.

F. CHOOSING NUMBER OF PARTITIONS WHICH IS NOT POWER OF TWO

Recall that ADCJ can make effective use of k partitions only if k is a power of two.
Hence, ADCJ is less flexible in choosing the partition number k. However, our
experiments suggest that in practice this inflexibility is not critical. For example,
in Figure 13 we can see that the execution time of ADCJ ‘flattens out’ in the
interval 128 ≤ k ≤ 1024. In other words, the inability to choose say k = 200 does
not cripple the performance of ADCJ. Furthermore, the limitation in choosing k
can be addressed using the modulo approach suggested in [Helmer and Moerkotte
1997]. To illustrate, for using k = 57 partitions in the above example, we compute
the partition assignment just as for k = 2�log2 57� = 64, and use (k mod 57) to
map each partition number into the interval 0, . . . , 56. We tested this approach
and found that it is effective only for those values of k that lie close to the next
larger power of two, e.g., k ≥ 1

42�log2 k� + 3
42�log2 k�. That is, in the above example,

we could effectively use ADCJ for partition numbers between (around) 56 and 64.
In contrast, for k between 33 and 55, the partition assignments produced by ADCJ
are skewed by applying modulo, and the algorithm performs even worse than for
k = 32. In summary, using the modulo approach allows us to extend our search for
best k from points (powers of two) to larger intervals.

G. ALGORITHMIC SPECIFICATION OF ADCJ AND APSJ

Each of the algorithms that we discussed implements a different partitioning func-
tion π. Recall that a partitioning function assigns each set of relation R to one
or multiple partitions R1, . . . , Rk, and each set of S to one or multiple partitions
S1, . . . , Sk. The partitioning functions for APSJ and ADCJ are specified in Algo-
rithm 2 and Algorithm 3, respectively. The algorithms are simple enough so that we
use Java notation directly instead of pseudo-code. In each algorithm, the partition-
ing function is called mapSetToPartitions. The function takes three parameters,
a bit vector partitions, a set of integers set, and a relation identifier relation.
The bit vector is used to return the partition assignment computed for the given
set of integers. The relation identifier determines whether the set originates from
relation R or S.
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double replADCJ(double lambda, int k, double rho) {

double pr = 1 / (1 + lambda);

double ps = 1 - Math.pow(lambda / (1 + lambda), lambda);

return computeReplADCJ(k, pr, ps, 1.0, rho) / (1.0 + rho);

}

double computeReplADCJ(int i, double pr, double ps,

double replR, double replS) {

if(i <= 0)

return replR + replS;

if(replR >= replS)

return computeReplADCJ(i-1, pr, ps, replR * pr, replS * ps) +

computeReplADCJ(i-1, pr, ps, replR * (1-pr), replS);

else

return computeReplADCJ(i-1, pr, ps, replR * (1-pr), replS * (1-ps)) +

computeReplADCJ(i-1, pr, ps, replR, replS * ps);

}
Algorithm 1: Algorithm for estimating the replication factor for ADCJ

void mapSetToPartitions(BitVector partitions,

/* holds resulting partition assignment */

int[] set,

/* a set to be assigned to partitions */

int relation) { /* set is from relation R or S */

// sig is computed as:

// sig = (int)Math.round(1.0/(1.0 - Math.pow(lambda/(lambda+k-1),

// 1.0/(k-1)/avgR)));

switch(relation) {

case R:

// randomly find a firing hash function using set elements

for(int j=0; j < set.length; j++) {

int p = hash(set[j]) % sig; // hash() is some simple hash function

if(p < k-1) { partitions.set(p + 1); return; }

}

partitions.set(0); // insert into default partition if none fires

break;

case S:

// determine target partitions using all set elements

for(int j=0; j < set.length; j++) {

int p = hash(set[j]) % sig;

if(p < k-1) { partitions.set(p + 1); }

}

partitions.set(0); // default partition contains all of S

}

}
Algorithm 2: Adaptive Partitioning Set Join (APSJ) algorithm (optimized for
hash functions based on bit-strings)
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void mapSetToPartitions(BitVector partitions,

/* holds resulting partition assignment */

int[] set,

/* a set to be assigned to partitions */

int relation) { /* set is from relation R or S */

// given: lambda is the ratio of average set cardinalities

// rho is the relation size ratio

pr = 1 / (1 + lambda);

ps = 1 - Math.pow(lambda / (1 + lambda), lambda);

// start recursion with hash fct index 0 and partNo=0

computeMap(partitions, offset, 0, set, relation, 0, rho);

}

void computeMap(BitVector partitions, int i /* index of hash fct */,

int[] set, int relation, int partNo, double ratio) {

if(i >= HASH_FCT_NUM) { // HASH_FCT_NUM = log(k)

partitions.set(partNo); // set bit number partNo in partition vector

return;

}

boolean h = h(i, set); // compute i-th boolean hash function

if(ratio <= 1.0 && h)

computeMap(partitions, i+1, set, relation,

partNo, ratio * ps / pr);

if(ratio > 1.0 && !h)

computeMap(partitions, i+1, set, relation,

partNo, ratio * (1-ps) / (1-pr));

if(ratio <= 1.0 && (relation == S || !h))

computeMap(partitions, i+1, set, relation,

partNo | (1 << i), ratio / (1-pr));

if(ratio > 1.0 && (relation == R || h))

computeMap(partitions, i+1, set, relation,

partNo | (1 << i), ratio * ps);

}
Algorithm 3: Adaptive Divide-and-Conquer Join (ADCJ) algorithm
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