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We identify crucial design issues in building a distributed inverted index for a large collection
of Web pages. We introduce a novel pipelining technique for structuring the core index-building
system that substantially reduces the index construction time. We also propose a storage scheme for
creating and managing inverted files using an embedded database system. We suggest and compare
different strategies for collecting global statistics from distributed inverted indexes. Finally, we
present performance results from experiments on a testbed distributed Web indexing system that
we have implemented.
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1. INTRODUCTION

Various access methods have been developed to support efficient search and
retrieval over text document collections. Examples include suffix arrays [Man-
ber and Myers 1990], inverted files or inverted indexes [Salton 1989; Witten
et al. 1999], and signature files [Faloutsos and Christodoulakis 1984]. Inverted
files have traditionally been the index structure of choice on the Web. Commer-
cial search engines use custom network architectures and high performance
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hardware to achieve sub-second query response times using such inverted
indexes.1

An inverted index over a collection of Web pages consists of a set of inverted
lists, one for each occurring word (or index term). The inverted list for a term
is a sorted list of locations where the term appears in the collection. A location
consists of a page identifier and the position of the term within the page. When
it is not necessary to track each term occurrence within a page, a location will
include just a page identifier (and as an option, the number of occurrences
within the page). Given an index term w, and a corresponding location l , we
refer to the pair (w, l ) as a posting for w.

Conceptually, building an inverted index involves processing each page to
extract postings, sorting the postings first on index terms and then on locations,
and finally writing out the sorted postings as a collection of inverted lists on
disk. When the collection is small and indexing is a rare activity, optimizing
index-building is not as critical as optimizing run-time query processing and
retrieval. With a Web-scale index however, index build time also becomes a
critical factor for two reasons.

Scale and growth rate. The Web is so large and growing so rapidly [Lawrence
and Giles 1999; Inktomi 2000] that traditional build schemes become unman-
ageable, requiring huge resources and taking days to complete (and becoming
more vulnerable to system failures). As a measure of comparison, the 40 million
page (220 GB) WebBase repository [Hirai et al. 2000] represents only about
4% of the estimated size of the publicly indexable Web as of January 2000
[Inktomi 2000], but is already larger than the 100 GB very large TREC-7 col-
lection [Hawking and Craswell 1998], the benchmark for large IR systems.

Rate of change. Since the content on the Web changes extremely rapidly [Cho
and Garcia-Molina 2000], there is a need to periodically crawl the Web and up-
date the inverted index. Indexes can either be updated incrementally or rebuilt
periodically, after every crawl. With both approaches, the key challenge is to
handle the large wholesale changes commonly observed between successive
crawls of the Web. For efficiency and simplicity, most commercial Web search
systems employ the rebuilding approach [M. Burrows, personal communica-
tion]. In this case, it is critical to build the index rapidly to provide access to
the new data.

To study and evaluate index building in the context of the special chal-
lenges imposed by the Web, we have implemented a testbed system that op-
erates on a cluster of nodes (workstations). As we built the testbed, we en-
countered several challenging problems that are typically not encountered
when working with smaller collections. In this paper we report on some of
these issues and the experiments we conducted to optimize build times for
massive collections.

— We propose the technique of constructing a software pipeline on each indexing
node to enhance performance through intra-node parallelism (Section 3).

1Even though the Web link structure is being utilized to produce high quality results, text-based
retrieval continues to be the primary method for identifying the relevant pages. In most commercial
search engines, a combination of text and link-based methods are employed.
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Fig. 1. Testbed architecture.

— We argue that the use of an embedded database system such as The Berkeley
Database [Olson et al. 1999] for storing inverted files, has a number of im-
portant advantages. We propose an appropriate format for inverted files that
makes optimal use of the features of such a database system (Section 4).

— Any distributed system for building inverted indexes needs to address the is-
sue of collecting global statistics (e.g., inverse document frequency—IDF). We
examine different strategies for collecting such statistics from a distributed
collection (Section 5).

— For each of the above issues, wherever appropriate, we present experiments
and performance studies to compare the alternatives.

We emphasize that the focus of this paper is on the process of building an
inverted index, not on using this index to process search queries. As a result,
we do not address issues such as ranking functions, relevance feedback, query
expansion, [Salton 1989; Witten et al. 1999], and distributed query processing
[Jeong and Omiecinski 1995; Tomasic and Garcia-Molina 1993b].

The focus of this paper is not on presenting a comprehensive performance or
feature-list comparison of our testbed indexing system with existing systems
for indexing Web and nonWeb collections. Rather, we use our experience with
the testbed to identify some key performance issues in building a Web-scale
index and propose generic techniques that are applicable to any distributed
inverted index system.

2. TESTBED ARCHITECTURE

Our testbed system for building inverted indexes operates on a distributed
shared-nothing architecture consisting of a collection of nodes connected by a
local area network. We identify three types of nodes in the system (Figure 1):

Distributors. These nodes store the collection of Web pages to be indexed.
Pages are gathered by a Web crawler and stored in a repository distributed
across the disks of these nodes [Hirai et al. 2000].

Indexers. These nodes execute the core of the index building engine.
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Query servers. Each of these nodes stores a portion of the final inverted index
and an associated lexicon. The lexicon lists all the terms in the corresponding
portion of the index and their associated statistics. Depending on the organi-
zation of the index files, some or all of the query servers may be involved in
answering a search query.

Note that many traditional information retrieval (IR) systems do not em-
ploy such a 3-tier architecture for building inverted indexes. In those systems,
the pages or documents to be indexed are placed on disks directly attached
to the machines that build the index. A 3-tier architecture, however, provides
significant benefits in the context of a Web search service. A Web search ser-
vice must perform three resource intensive tasks—crawling, indexing, and
querying—simultaneously. Even as existing indexes are used to answer search
queries, newer indexes (based on a more recent crawl) must be constructed,
and in parallel, the crawler must begin a fresh crawl. A 3-tier architecture
clearly separates these three activities by executing them on separate banks of
machines, thus improving performance. This ensures that pages are indexed
and made available for querying as quickly as possible, thereby maximizing
index freshness.

Overview of indexing process. The inverted index is built in two stages. In the
first stage, each distributor node runs a distributor process that disseminates
the collection of Web pages to the indexers. Each indexer receives a mutually
disjoint subset of pages and their associated identifiers. The indexers parse and
extract postings from the pages, sort the postings in memory, and flush them
to intermediate structures on disk.

In the second stage, these intermediate structures are merged together to
create one or more inverted files and their associated lexicons. An (inverted file,
lexicon) pair is generated by merging a subset of the sorted runs. Each (inverted
file, lexicon) pair is transferred to one or more query servers. In this paper, for
simplicity, we assume that each indexer builds only one such pair.

Distributed inverted index organization. In a distributed environment, there
are two basic strategies for distributing the inverted index over a collection
of query servers [Martin et al. 1986; Ribeiro-Neto and Barbosa 1998; Tomasic
and Garcia-Molina 1993b]. One strategy is to partition the document collection
so that each query server is responsible for a disjoint subset of documents in
the collection (called local inverted files by Ribeiro-Neto and Barbosa [1998]).
The other option is to partition based on the index terms so that each query
server stores inverted lists only for a subset of the index terms in the collection
(called global inverted files by Ribeiro-Neto and Barbosa [1998]). Performance
studies described in Tomasic and Garcia-Molina [1993b] indicate that for large
collections, the local inverted file organization uses system resources effectively
and provides good query throughput in most cases. We therefore employ the
local inverted file organization in our testbed.

Testbed environment. Our indexing testbed uses the large repository of Web
pages provided by the WebBase project [Hirai et al. 2000] as the test corpus
for the performance experiments. The storage manager of the WebBase sys-
tem receives pages from the Web crawler [Cho and Garcia-Molina 2000] and
populates the distributor nodes. The indexers and the query servers are single
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Fig. 2. Logical phases.

processor PCs with 350–500 MHz processors, 300–500 MB of main memory,
and are equipped with multiple IDE disks. The distributor nodes are dual-
processor machines with SCSI disks housing the repository. All the machines
are interconnected by a 100 Mbps Ethernet LAN.

3. PIPELINED INDEXER DESIGN

The core of the indexing system is the index-builder process that executes on
each indexer. The input to the index-builder process is a sequence of Web pages
and their associated identifiers.2 The output of the index-builder is a set of
sorted runs. Each sorted run contains postings extracted from a subset of the
pages received by the index-builder.

The process of generating these sorted runs can logically be split into three
phases, as illustrated in Figure 2. We refer to these phases as loading, pro-
cessing, and flushing. During the loading phase, some number of pages are
read from the input stream. The processing phase involves two steps. First, the
pages are parsed to remove HTML tagging, tokenized into individual terms,
and stored as a set of postings in a memory buffer. In the second step, the post-
ings are sorted in place, first by term, then by location. During the flushing
phase, the sorted postings in the memory buffer are saved on disk as a sorted
run. These three phases are executed repeatedly until the entire in put stream
of pages has been consumed.

Loading, processing and flushing tend to use disjoint sets of system resources.
Processing is obviously CPU-intensive, whereas flushing primarily uses sec-
ondary storage, and loading can be done directly from the network, tape, or a
separate disk. Indexing performance can, therefore, be improved by executing
these three phases concurrently. Since the execution order of loading, process-
ing and flushing is fixed, these three phases together form a software pipeline.

Figure 3 illustrates the benefits of pipelined parallelism during index con-
struction. The figure shows a portion of an indexing process that uses three
concurrent threads, operates on three reusable memory buffers, and generates
six sorted runs on disk.

The key issue in pipelining is to design an execution schedule for the differ-
ent indexing phases that will result in minimal overall running time (called
makespan in the scheduling literature). Our problem differs from a typical job
scheduling problem [Chakrabarti and Muthukrishnan 1996] in that we can
vary the sizes of the incoming jobs, that is, in every loading phase we can

2The URLs are normally replaced by numeric identifiers for compactness.
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Fig. 3. Multi-threaded execution.

choose the number of pages to load. In the rest of this section, we describe how
we make effective use of this flexibility. First we derive, under certain simpli-
fying assumptions, the characteristics of an optimal indexing pipeline schedule
and determine the theoretical speedup achievable through pipelining. Next,
we describe experiments that illustrate how observed performance gains differ
from the theoretical predictions.

3.1 Theoretical Analysis

Let us consider an indexer node that has one resource of each type—a single
CPU, a single disk, and a single network connection over which to receive the
pages. How should we design the pipeline shown in Figure 2 to minimize index
construction time?

First, notice that executing concurrent phases of the same kind, such as two
disk flushes, is futile, since we have only one resource of each type. Consider
an index-builder that uses N executions of the pipeline to process the entire
collection of pages and generate N sorted runs. By an execution of the pipeline,
we refer to the sequence of three phases—loading, processing, and flushing—
that transform some set of pages into a sorted run. Let Bi, i = 1 . . .N , be the
buffer sizes used during these N executions. The sum

∑N
i=1 Bi = Btotal is fixed

for a given amount of text input and represents the total size of all the postings
extracted from the pages. Our aim is to come up with a way of choosing the Bi
values so as to minimize the overall running time.

Loading and flushing take time linear in the size of the buffer. Process-
ing time has a linear component (representing time for removing HTML
and tokenizing) and a linear-logarithmic component (representing sorting
time). Let li = λBi, fi =ϕBi, and pi = δBi + σBi log Bi represent the dura-
tions of the loading, flushing, and processing phases for the ith execution
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Table I. Measured Constants

Constant Value

λ 1.26× 10−3

ϕ 4.62× 10−4

δ 6.74× 10−4

σ 2.44× 10−5

of the pipeline.3 For large N , the overall indexing time is determined by
the scarcest resource (the CPU, in Figure 3) and can be approximated by
Tp= max{∑N

i=1 li,
∑N

i=1 pi,
∑N

i=1 fi}.
It can be shown (see A) that Tp is minimized when all N pipeline executions

use the same buffer size B, where B = B1 · · · = BN = Btotal
N . Let l = λB, f = ϕB,

and p = δB+σB log B be the durations of the loading, processing, and flushing
phases, respectively. We must choose a value of B that maximizes the speedup
gained through pipelining.

We calculate speedup as follows. Pipelined execution takes time Tp=
N max(l , p, f ) (6p in Figure 3) and uses 3 buffers, each of size B. In compar-
ison, sequential execution using a single buffer of size 3B will take time Ts =
N
3 (l ′ + p′ + f ′), where l ′ = λ(3B), f ′ = ϕ(3B), and p′ = δ(3B)+ σ (3B) log (3B).
Thus, in a node with a single resource of each type, the maximal theoretical
speedup that we can achieve through pipelining is (after simplification):

θ = Ts

Tp
= (l + p+ f )

max(l , p, f )
+ σ log 3

max(λ, ϕ, δ + σ log B)
= θ1 + θ2

Now, θ1 ≥ 1 whereas θ2 ≤ σ log 3
max(λ,ϕ) ¿ 1 for typical values of λ, ϕ, and σ (refer to

Table I). Therefore, we ignore θ2 and concentrate on choosing the value of B that
maximizes θ1. The maximum value of θ1 is 3, which is reached when l = p= f ,
that is, when all three phases are of equal duration. We cannot guarantee
l = f since that requires λ=ϕ. However, we can maximize θ1 by choosing
p= max(l , f ) so that θ1= 2+ min(l , f )

max(l , f ) .
For example, in Figure 3, the ratio between the phases is l :p: f = 3:4:2.

Thus, θ1 for this setting is 3+4+2
4 = 2.25. We could improve θ1 by changing the

ratio to 3:3:2, so that θ1 = 2+ 2
3 ≈ 2.67. In general, setting δB+ σB log B =

max{λB, ϕB}, we obtain

lg B = max{λ, ϕ} − δ
σ

(1)

This expression represents the size of the postings buffer that must be used to
maximize the pipeline speedup on an indexer with a single resource of each type.
If we use a buffer of size less than that specified by equation 1, loading or flush-
ing (depending on the relative magnitudes of λ and ϕ), will be the bottleneck,
and the processing phase will be forced to periodically wait for the other phases
to complete. An analogous effect will take place for buffer sizes greater than

3λ= λ1λ2, where λ1 is the rate at which pages can be loaded into memory from the network and
λ2 is the average ratio between the size of a page and the total size of the postings generated from
that page.
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Fig. 4. Optimal buffer size.

the one prescribed by equation 1. We can generalize equation 1 for an indexer
with c identical processors, d identical disks, and i input streams, to obtain

lg B = max{λdµ/ie, ϕdµ/de} − δdµ/ce
σdµ/ce , (2)

where µ = max{c, d , i}.

3.2 Experimental Results

To study the impact of the pipelining technique on indexing performance, we
conducted a number of experiments on our testbed, using a single indexer sup-
plied with a stream of Web pages from a distributor.

We first ran the index-builder process in measurement mode, where we
recorded the execution times of the various phases and determined the val-
ues of λ, ϕ, σ , and δ (Table I). Using the values of these constants in equation 1,
we evaluated B to be 16 MB. The optimal total size of the postings buffers, as
predicted by our theoretical analysis, is therefore, 3B = 48 MB.

Impact of buffer size on performance. Figure 4 illustrates how the perfor-
mance of the index-builder process varies with the size of the buffer. It high-
lights the importance of the analytical result as an aid in choosing the right
buffer size. The optimal total buffer size based on actual experiments turned
out be 40 MB. Even though the predicted optimum size differed slightly from
the observed optimum, the difference in running times between the two sizes
was less than 15 minutes for a 5 million page collection. For buffer sizes less
than 40, loading proved to be the bottleneck, and both the processing and flush-
ing phases had to wait periodically for the loading phase to complete. As the
buffer size increased beyond 40, however, the processing phase dominated the
execution time since larger and larger buffers of postings had to be sorted.

Performance gain through pipelining. Figure 5 shows how pipelining im-
pacts the time taken to process and generate sorted runs for a variety of input
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Table II. Overall Speedup after Including Time for Merging Sorted Runs

Collection Size Speedup in Generating Sorted Runs Overall Speedup Including Merging
(Seconds) (Seconds)

100,000 96 76
500,000 584 550

1,000,000 1264 1134
2,000,000 2505 2265

Fig. 5. Performance gain through pipelining.

sizes. Note that for small collections of pages, the performance gain through
pipelining, though noticeable, is not substantial. This is because small collec-
tions require very few pipeline executions and the overall time is dominated
by the time required at startup (to load up the buffers) and shutdown (to flush
the buffers). This is one of the reasons that pipelined index building has not re-
ceived attention; most systems have dealt with smaller collections. As collection
sizes increase, however, the gain becomes more significant, and for a collection
of 5 million pages, pipelining completes almost 1.5 hours earlier than a purely
sequential implementation. Our experiments showed that, in general, for large
collections, a sequential index-builder is about 30–40% slower than a pipelined
index-builder. Note that the observed speedup is lower than the speedup pre-
dicted by the theoretical analysis described in the previous section. That anal-
ysis was based on an “ideal pipeline,” in which loading, processing and flushing
do not interfere with each other in any way. In practice, however, network and
disk operations do use processor cycles and access main memory. Hence, any two
concurrently running phases, even of different types, do slow each other down.

Note that for a given total buffer size, pipelined execution generates sorted
runs that are approximately 3 times smaller than those generated by a sequen-
tial indexer. Consequently, 3 times as many sorted runs will need to be merged
in the second stage of indexing. As indicated in Table II, however, our experi-
ments indicate that even for very large collection sizes, the potential increase in
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merging time is more than offset by the time gained in the first stage through
pipelining. We expect that as long as there is enough memory, at merge time,
to allocate buffers for the sorted runs, merging performance will not be signifi-
cantly affected.

4. MANAGING INVERTED FILES IN AN EMBEDDED DATABASE SYSTEM

When building inverted indexes over massive Web-scale collections, the choice
of an efficient storage format is particularly important. There have traditionally
been two approaches to storing and managing inverted files; using a custom
implementation, or leveraging existing relational or object data management
systems [Brown et al. 1994; Gorssman and Driscoll 1992].

The advantage of a custom implementation is that it enables very effective
optimizations tuned to the specific operations on inverted files (e.g., caching
frequently used inverted lists, compressing rarely used inverted lists using
expensive methods that may take longer to decompress). When leveraging ex-
isting data management systems, such fine-grained control over the implemen-
tation may not be possible. There is also likely to be extra overhead in using
the higher level of abstraction provided by the data management system. On
the other hand, there is opportunity for reduction in development time and
complexity. The challenge lies in designing a scheme for storing inverted files
that makes optimal use of the storage structures provided by the data man-
agement system. The storage scheme must be space efficient and must ensure
that the basic lookup operation on an inverted file (i.e., retrieving some or all of
the inverted list for a given index term) can be efficiently implemented using
the access methods of the data management system.

Note that even though many custom inverted file structures, such as those
described by Moffat and Zobel [1996], Anh and Moffat [1998], and Brown [1995]
could potentially use database systems for managing the opaque data blocks
of their index, such implementations do not fully exploit the capabilities of
the underlying system. For instance, such applications would typically need
to employ several types of data blocks, as well as custom link structures, and
access methods superimposed on top of the underlying database system. For
example, Brown [1995] reports on the use of a persistent object store for man-
aging inverted files. The implementation described there uses many different
kinds of blocks for storing headers, directories, location lists, and so forth. Basic
lookup operations in that implementation translate into several traversals in
the underlying object store.

In this section we present and compare different storage schemes for man-
aging large inverted files in an embedded database system. The schemes we
suggest use uniform block structures and exploit the native access methods
and features of the database system, as much as possible. To test our schemes,
we used a freely available embedded database system called Berkeley DB
[Olson et al. 1999], which is widely deployed in many commercial applications.

An embedded database is a library, or toolkit, that provides database support
for applications through a well defined programming API. Unlike traditional
database systems that are designed to be accessed by applications, embedded
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databases are linked (at compile-time or run-time) into an application and act
as its persistent storage manager. They provide device-sensitive file allocation,
database access methods (such as B-trees and hash indexes), and optimized
caching, with optional support for transactions, locking, and recovery. They
also have the advantage of much smaller footprints compared to full-fledged
client-server database systems.

In the following, we briefly the sketch the capabilities of Berkeley DB and
propose a B-tree based inverted file storage scheme called the mixed-list scheme.
We qualitatively and quantitatively compare the mixed-list scheme with two
other schemes for storing inverted lists in Berkeley DB databases.

4.1 Rationale and Implementation

Berkeley DB provides a programming library for managing (key,value) pairs,
both of which can be arbitrary binary data of any length. It offers four access
methods, including B-trees and linear hashing, and supports transactions, lock-
ing, and recovery.4 We chose to use the B-tree access method since it efficiently
supports prefix searches (e.g., retrieve inverted lists for all terms beginning
with “pre”) and has higher reference locality than hash-based indexes.

The standard organization of a B-tree based inverted file involves storing the
index terms in the B-tree along with pointers to inverted lists that are stored
separately. Such an organization, though easy to implement using Berkeley DB,
does not fully utilize the capabilities of the database system. Since Berkeley DB
efficiently handles arbitrary sized keys and values, it is more efficient to store
both the index terms and their inverted lists within the database. This enables
us to leverage Berkeley DB’s sophisticated caching schemes while retrieving
large inverted lists with a minimum number of disk operations.

Storage schemes. The challenge is to design an efficient scheme for organizing
the inverted lists within the B-tree structure. We considered three schemes:

(1) Full list: The key is an index term, and the value is the complete inverted
list for that term.

(2) Single payload: Each posting (an index term, location pair) is a separate
key.5 The value can either be empty or may contain additional information
about the posting.

(3) Mixed list: The key is again a posting, that is, an index term and a location.
The value contains a number of successive postings in sorted order, however,
even those referring to different index terms. The postings in the value
field are compressed and in every value field the number of postings is
chosen so that the length of the field is approximately the same. Note that
in this scheme, the inverted list for a given index term may be spread across
multiple (key,value) pairs.

In implementing the mixed list storage scheme, any well-known encoding
technique [Witten et al. 1999] can be used to pack postings efficiently into the

4All these features can be turned off for efficiency, if desired.
5Storing the indexing term in the key and a single location in the value is not a viable option as
the locations for a given term are not guaranteed to be in sorted order.
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Fig. 6. Mixed list storage scheme.

value field, as long as the size of the value field is kept approximately constant.
For instance, in our implementation, we used an encoding scheme, adapted
from Witten et al. [1999], in which successive index terms in the value field are
represented using prefix compression, and successive location identifiers are
represented in terms of their numerical differences.6

Figure 6 illustrates how the mixed list storage scheme, using this encod-
ing, stores inverted lists. For simplicity, in this example we assume that no
additional information is maintained along with each posting. In our actual
implementation, however, we allocated a 2-byte payload field, to store extra
posting-level information. The top half of the figure depicts inverted lists for
four successive index terms and the bottom half shows how they are stored
as (key,value) pairs using the mixed-list scheme. For example, the second
(key,value) pair in the figure, stores the set of postings (cat,311), (cat,328),
(catch,103), (catcher,147), and so forth, with the first posting stored in the
key and the remaining postings stored in the value. As indicated in the figure,
the index terms in the value field are prefix compressed, and location iden-
tifiers are represented as differences. For example, the posting (cat,328) is
represented by the sequence of entries 3 〈an empty field〉 17, where 3 indicates
the length of the common prefix between the words for postings (cat,311) and
(cat,328), the 〈empty field〉 indicates that both postings refer to the same
word, and 17 is the difference between the locations 328 and 311. Similarly, the
posting (catch,103) is represented by the sequence of entries 3 ch 103, where
3 is the length of the common prefix of cat and catch, ch is the remaining suffix
for catch, and 103 is the location.

A qualitative comparison of these storage schemes is summarized in
Table III. In this table, the symbols “++”, “+”, “+−”, “−”, and “−−” denote,
in decreasing order, qualitative goodness measures for each scheme relative to
the performance metrics.

Index size. The crucial factors determining index size are the number of in-
ternal pages (a function of the height of the B-tree) and the number of overflow

6These numerical differences are in turn compressed using the ASN.1 Basic Encoding Rules spec-
ification [CCITT 1988].
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Table III. Comparison of Storage Schemes

Scheme Index Size Zig-Zag Joins Hot Updates
Single payload −− + +
Full list +− − −
Mixed list +− +− +−

pages.7 In the single payload scheme, every posting corresponds to a new key,
resulting in rapid growth in the number of internal pages of the database.
For large collections, the database size becomes prohibitive, even though
Berkeley DB employs prefix compression on keys. At query time, many
performance-impeding disk accesses are needed. The situation is significantly
better with the full list scheme. A database key is only created for every distinct
term, and the value field can be well compressed. However, many terms occur
only a few times in the collection, whereas others may occur in almost every
page. Because of large variations in the size of the value field, many overflow
pages are created in the database. In contrast with the mixed list scheme, the
length of the value field is approximately constant, thus limiting the number of
overflow pages. Moreover, the total number of keys (and hence the number of in-
ternal pages) can be further reduced by choosing a larger size for the value field.
Since the value field can contain postings of different index terms, however, it
is not compressed as well as with full lists.

Zig-zag joins. The ability to selectively retrieve portions of an inverted list
may be very useful when processing conjunctive search queries on an in-
verted file [Moffat and Zobel 1996]. For example, consider the query green
AND catchflies. The term green occurs on the Web in millions of documents,
whereas catchflies produces only a couple of dozen hits. A zig-zag join [Garcia-
Molina et al. 2000] between the inverted lists for green and catchflies allows
us to answer the query without reading out the complete inverted list for green.
The single payload scheme provides the best support for zig-zag joins, since each
posting can be retrieved individually. In the full list scheme, the entire list must
be retrieved to compute the join, whereas with the mixed list scheme, access to
specific portions of the inverted list is available. For example, in Figure 6, to
retrieve locations for cat starting at 311, we do not have to read the portion of
the list for locations 100–280.

Obviously, the benefit of partial retrieval decreases when only large portions
of inverted lists can be accessed individually [Moffat and Zobel 1996]. As we
demonstrate in the next section, however, the optimal time for retrieving in-
verted lists in the mixed list scheme is achieved for relatively small sizes of
the value field (e.g., 512 bytes in Figure 8). This indicates that with the mixed
list scheme, a query processor can effectively exploit zig-zag joins, reduce the
amount of information to be read from disk, and thereby achieve improved
performance.

Hot updates. Hot updates refers to the ability to modify the index at query
time. This is useful when very small changes need to be made to the index

7Since values can be of arbitrary length, Berkeley DB uses overflow pages to handle large value
fields.
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Fig. 7. Varying value field size.

between two successive index rebuilds. For example, Web search services often
allow users and organizations to register their home pages. Such additions
can be immediately accommodated in the index using the hot update facility,
without having to defer them until the index is next rebuilt.

In all three schemes, the concurrency control mechanisms of the database
can be used to support such hot updates while maintaining consistency. The
crucial performance factor however, is the length of the inverted list that must
be read, modified, and written back, to achieve the update. Since we limit the
length of the value field, hot updates are faster with mixed lists than with full
lists. The single payload scheme provides the best update performance since
individual postings can be accessed and modified.

Notice that all three schemes significantly benefit from the fact that the
postings are first sorted, and then inserted. Inserting keys into the B-tree in a
random order negatively affects the page-fill factor, and expensive tree reorga-
nization is needed. Berkeley DB is optimized for sorted insertions so that high
performance and a near- one page fill-factor can be achieved in the initial index
construction phase.

In the following section, we present a quantitative comparison of storage and
retrieval efficiency for the three storage schemes discussed in this section.

4.2 Experimental Results

The experimental data presented in this section was obtained by building an
inverted index over a collection of 2 million Web pages. The collection contains
4.9 million distinct terms with a total of 312 million postings.8

Figure 7 illustrates how the choice of the storage scheme affects the size of
the inverted file. It shows the variation of index size with value field size, when
using the mixed list scheme. The dotted line represents the index size when the
same database was stored using the full list scheme. Note that, since the value
field size is not applicable to the full list scheme, the graph is just a horizontal

8Only one posting was generated for all the occurrences of a term in a page.

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.



Building a Distributed Full-Text Index for the Web • 231

Table IV. Mixed-List Scheme Index Sizes

Number of Pages Input Size Index Size Index Size
(million) (GB) (GB) (%)

0.1 0.81 0.04 6.17
0.5 4.03 0.24 6.19
2.0 16.11 0.99 6.54
5.0 40.28 2.43 6.33

line. The single payload scheme can be viewed as an extreme case of the mixed
scheme with the value field being empty. Figure 7 shows that both very small
and very large value fields have an adverse impact on index size. In the mixed
list scheme, very small value fields will require a large number of internal
database pages (and a potentially taller B-tree index) to accommodate all the
postings. On the other hand, very large value fields will cause Berkeley DB to
allocate a large number of overflow pages, which leads to a larger index. As
indicated in the figure, a value field size of 512 bytes provided the best balance
between these two effects. The full list scheme results in a moderate number
of overflow pages and internal database pages. However, it still requires about
30% more storage space than the optimal mixed list inverted file. For all of
the examined storage schemes, the time to write the inverted file to disk was
roughly proportional to the size of the file.

Table IV shows how the index size (using the mixed list scheme) varies with
the size of the input collection. The index sizes listed in Table IV include the
sum of the sizes of the inverted files and the associated lexicons. The numbers
for Table IV were generated by using mixed lists with the optimal value field
size of 512 bytes derived from Figure 7. Table IV shows that the mixed list
storage scheme scales very well to large collections. The size of the index is
consistently less than 7% of the size of the input HTML text. This compares
favorably with the sizes reported for the VLC2 track (which also used crawled
Web pages) at TREC-7 [Hawking and Craswell 1998] where the best reported
index size was approximately 7.7% of the size of the input HTML. Our index
sizes are also comparable to other recently reported sizes for non-Web document
collections using compressed inverted files [Anh and Moffat 1998]. Note that
exact index sizes are dependent on the type and amount of information main-
tained along with each posting (e.g., information to handle proximity queries).
We believe, however, that the 2-byte payload field used in our implementation
can accommodate most posting-level information normally stored in inverted
indexes.

Figure 8 illustrates the effect of value field size on inverted list retrieval
time. Once again, the dotted horizontal line represents the retrieval time when
using the fixed list scheme. Figure 8 was produced by generating uniformly
distributed query terms and measuring the time9 required to retrieve the entire
inverted list for each query term. The optimal retrieval performance in the
mixed list scheme is achieved when the value field size is between 512 and 1024

9A warming-up period was allowed before the measurements to fill the database and file system
cache.
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Fig. 8. Time to retrieve inverted lists.

bytes. Notice that (from Figures 7 and 8) a value field size of 512 bytes results
in maximum storage as well as maximum retrieval efficiency for the mixed list
scheme. Figure 8 also indicates that both the fixed list and mixed list (with
optimal value field size) schemes provide comparable retrieval performance.

Note that Figure 8 only indicates the raw inverted list retrieval performance
of the different storage schemes. True query processing performance will be af-
fected by other factors, such as caching (of inverted lists), use of query processing
techniques such as zig-zag joins, and the distribution of the query terms.

5. COLLECTING GLOBAL STATISTICS

Most text-based retrieval systems use some kind of collection-wide informa-
tion to increase effectiveness of retrieval [Viles and French 1995]. One popular
example is the inverse document frequency (IDF) statistics used in ranking
functions. The IDF of a term is the inverse of the number of documents in the
collection that contain that term. If query servers have only IDF values over
their local collections, then rankings would be skewed in favor of pages from
query servers that return few results.

Depending on the particular global statistic, the ranking function, and the
nature of the collection, it may or may not be necessary for a statistic to be
computed accurately. In some cases, it suffices to estimate the global statistic
from the local values at the individual query servers, or from sampling (see
related work in Section 6). In this section, however, we analyze the problem of
gathering accurate collection-wide information (with minimum overhead), for
the cases where this is required. We present two techniques that can be used for
gathering different types of collection-wide information, though here we focus
on the problem of collecting term-level global statistics, such as IDF values.10

10Term-level refers to the fact that any gathered statistic describes only single terms, and not higher
level entities such as pages or documents.

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.



Building a Distributed Full-Text Index for the Web • 233

Table V. Comparing Strategies

Statistician Memory
Phase Load Usage Parallelism

ME merging +− + +−
FL flushing − − ++

5.1 Design

Some authors suggest computing global statistics at query time. This would
require an extra round of communication among the query servers to exchange
local statistics. This communication adversely impacts query processing perfor-
mance, especially for large collections spread over many servers. Since query
response times are critical, we advocate precomputing and storing statistics at
the query servers during index creation.

Our approach is based on using a dedicated server, known as the statistician,
for computing statistics. Having a dedicated statistician allows most computa-
tion to be done in parallel with other indexing activities. It also minimizes the
number of conversations among servers, since indexers exchange statistical
data with only one statistician. Local information is sent to the statistician at
various stages of index creation, and the statistician returns global statistics
to the indexers in the merging phase. Indexers then store the global statistics
in the local lexicons. A lexicon consists of entries of the form (term, term-id,
local-statistics, global-statistics), where the terms stored in a lexicon are only
those terms occurring in the associated inverted file (Section 2).

In order to avoid extra disk I/O, local information is sent to the statistician
only when it is already in memory. We have identified two phases in which
this occurs: flushing—when sorted runs are written to disk, and merging—
when sorted runs are merged to form inverted lists and the lexicon. Sending
information in these two phases leads to two different strategies with various
tradeoffs, which are discussed in the next section. We note here only that by
sending information to the statistician in these phases without additional I/O’s,
a huge fraction of the statistic collection is eliminated.

Sending information to the statistician is further optimized by summarizing
the postings. In both identified phases, postings occur in at least partially sorted
order, that is, multiple postings for a term pass through memory in groups.
Groups are condensed into (term, local aggregated information) pairs which
are sent to the statistician. For example, if an indexer holds 10,000 pages that
contain the term “cat,” instead of sending 10,000 individual postings to the
statistician, the indexer can count the postings as they pass through memory in
a group and send the summary (“cat”, 10000) to the statistician. The statistician
receives local counts from all indexers, and aggregates these values to produce
the global document frequency for “cat”. This technique greatly reduces network
overhead in collecting statistics.

5.2 Statistic Gathering Strategies

Here we describe and compare the two strategies mentioned above for send-
ing information to the statistician. Table V qualitatively summarizes their
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Fig. 9. ME strategy.

Fig. 10. FL strategy.

characteristics (using the same notation as in Table III). The column titled
“Parallelism,” refers to the degree of parallelism possible within each strategy.

ME Strategy (sending local information during merging). Summaries for
each term are aggregated as inverted lists are created in memory, and sent to
the statistician. The statistician receives parallel sorted streams of (term, local-
aggregate-information) values from each indexer and merges these streams by
term, aggregating the sub-aggregates for each term to produce global statis-
tics. The statistics are then sent back to the indexers in sorted term order. This
approach is entirely stream based, and does not require in-memory or on-disk
data structures at the statistician or indexer to store intermediate results. Us-
ing streams, however, means that the progress of each indexer is synchronized
with that of the statistician, which in turn causes indexers to be synchronized
with each other. As a result, the slowest indexer in the group becomes the
bottleneck, holding back the progress of faster indexers. Figure 9 illustrates
the ME strategy for collecting document frequency statistics for each term.
Note that the bottom lexicon does not include statistics for “rat” because the
term is not present in the local collection.

FL Strategy (sending local information during flushing). As sorted runs are
flushed to disk, postings are summarized and the summaries sent to the statisti-
cian. Since sorted runs are accessed sequentially during processing, the statis-
tician receives streams of summaries in globally unsorted order. To compute
statistics from the unsorted streams, the statistician keeps an in-memory hash
table of all terms and their statistics, and updates the statistics as summaries
for a term are received. At the end of the processing phase, the statistician
sorts the statistics in memory and sends them back to the indexers. Figure 10
illustrates the FL strategy for collecting document frequency statistics.
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Fig. 11. Overhead of statistics collection.

5.3 Experiments

To demonstrate the performance and scalability of the collection strategies,
we ran the index-builder and merging processes on our testbed, using a
hardware configuration consisting of four indexers.11 We experimented with
four different collection sizes—100000, 500000, 1000000, and 2000000 pages,
respectively. The results are shown in Figure 11, where we can see the relative
overhead (defined as T2−T1

T1
where T2 is the time for full index creation with

statistics collection and T1 is the time for full index creation with no statistics
collection) for both strategies. In general, experiments show that the FL
strategy outperforms ME, although they seem to converge as the collection
size becomes large. Furthermore, as the collection size grows, the relative
overheads of both strategies decrease.

Comparison of strategies. At first glance ME might be expected to outperform
FL. Since the statistician receives many summary streams in FL, but only one
from each indexer in ME, it performs more comparison and aggregation in
FL than in ME. As mentioned earlier, however, merging progress in ME is
synchronized among the servers. Hence, a good portion of computation done at
the statistician cannot be done in parallel with merging activities at the indexer.

In FL, on the other hand, the indexer simply writes summaries to the network
and continues with its other work. The statistician can then asynchronously
process the information from the network buffer in parallel. Not all work can
be done in parallel, however, since the statistician consumes summaries at a
slower rate than the indexer writes them to network, and the network buffer
generally cannot hold all the summaries from a sorted run. Hence there is still
nontrivial waiting at the indexer during flushing as summaries are sent to the
statistician.

11All indexers had the specifications listed in Section 2.
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Fig. 12. Varying lexicon buffer size.

Enhancing parallelism. In the ME strategy, synchronization occurs when an
indexer creates a lexicon entry and summary for a term, sends the summary
to the statistician, and then waits for the global statistic to be returned so that
the lexicon entry can be completed. To reduce the effect of synchronization, the
merging process can, instead, write lexicon entries to a lexicon buffer, and a
separate process will wait for global statistics and include them in the entries.
In this way, the first process need not block while waiting, and both processes
can operate in parallel.

Figure 12 shows the effect of lexicon buffer size on merging performance over
a collection of a million pages. Because lexicon entries are created faster than
global statistics are returned on all indexers but the slowest, the lexicon buffer
often becomes full. When this occurs, the process creating lexicon entries must
block until the current state changes. Because larger lexicon buffers reduce
the possibility of saturation, we see that as expected, initial increases in size
result in large performance gains. As lexicon buffer size becomes very large,
however, performance slowly deteriorates due to memory contention. Although
the entire buffer need not be present in memory at any one time, the lexicon
buffer is accessed cyclically; therefore LRU replacement and the fast rate at
which lexicon entries are created cause buffer pages to cycle rapidly through
memory, swapping out other, non buffer, pages.

Sub-linear growth of overhead. The constant decrease of the ME and FL
relative overhead in Figure 11 is because of the fact that the number of distinct
terms in a page collection is a sub-linear function of collection size. The overhead
incurred by gathering statistics grows linearly with the number of terms in the
collection, while the cost of index creation grows linear-logarithmically with the
size of the collection. As a result, overhead of statistic collection displays sub-
linear growth with respect to index creation time. This prediction is consistent
with our experimental results.

The decreasing relative overhead for FL, however, is subject to the constraint
that the hashtable can fit in memory. Considering that a collection of a billion
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pages would require a hash table of roughly 5–6 GB in size,12 this constraint
may become a problem for very large collections. While a memory of 6 GB
is not completely unreasonable, a simple alternative, using only commodity
hardware, would be to run several statisticians in parallel, and partition the
terms alphabetically between statisticians. In this way, each statistician can
collect a moderately sized set of global statistics. We have not yet implemented
this option in our system.

6. RELATED WORK

There has been recent interest, motivated by the Web, in designing scalable
techniques to speed up inverted index construction using distributed architec-
tures. Ribeiro-Neto et al. [1999] describe three techniques to efficiently build an
inverted index using a distributed architecture. However, they focus on build-
ing global (partitioning index by term), however, rather than local (partitioning
by collection), inverted files. Furthermore, they do not address issues such as
global statistics collection and optimization of the indexing process on each
individual node.

Our technique for structuring the index engine as a pipeline has much in com-
mon with pipelined query execution strategies employed in relational database
systems [Garcia-Molina et al. 2000]. In Chakrabarti and Muthukrishnan
[1996], the authors present a variety of algorithms for resource scheduling,
with applications to scheduling pipeline stages.

There has been prior work on using relational or object-oriented data stores
to manage and process inverted files [Blair 1988; Brown et al. 1994; Gorssman
and Driscoll 1992]. Brown et al. [1994] describe the architecture and perfor-
mance of an IR system that uses a persistent object store to manage inverted
files. Their results show that using an off-the-shelf data management facil-
ity improves the performance of an information retrieval system, primarily
because of intelligent caching and device-sensitive file allocation. We experi-
enced similar performance improvements, for the same reasons, by employing
an embedded database system. Our storage format differs greatly from theirs
because we utilize a single B-tree for storing all the inverted lists in uniformly
structured blocks.

As with the mixed list scheme presented in this paper, the “self-indexing”
inverted list structures described in Moffat and Zobel [1996] (skipped-list) and
Anh and Moffat [1998] (random-access lists) also provides selective access to
portions of an inverted list. Moffat and Zobel [1996] propose dividing the in-
verted list into blocks, each containing a fixed number of postings. To extract
postings from within a block, the block needs to be sequentially decoded, how-
ever, a separate skip list (also compressed) is used to navigate from one block
to another. A given posting is, therefore, located by first navigating the skip
list to identify the block in which it might be contained and then decoding that
block. Anh and Moffat [1998] use fixed-length blocks (constant number of bits),

12From collection statistics described in Melnik et al. [2000], a billion pages will contain roughly
310 million distinct terms. If each term uses 20 bytes of storage, this will result in a hashtable of
about 5.77 GB.
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rather than blocks with a constant number of postings, and develop a scheme
to efficiently encode and decode such blocks.

Conceptually, the blocks used in these structures correspond to the value
fields of the mixed list scheme. The synchronization points used in Moffat and
Zobel [1996] correspond to the key fields of the mixed list scheme. There are a
couple of significant differences, however. First, the value fields are organized
as the leaf nodes of a prefix-compressed B-tree,13 whereas in Moffat and Zobel
[1996] and Anh and Moffat [1998], all blocks belonging to an inverted list are
organized sequentially. Second, a given value field can include postings from
more than one inverted list, whereas that is not the case with the structures
described in Moffat and Zobel [1996] and Anh and Moffat [1998]. Hence, the
synchronization points in Moffat and Zobel [1996] contain just document iden-
tifiers, whereas keys also contain index terms.

De Kretser et al. [1998] present different types of global statistics that may
be used for query processing. Their focus, however, is on the types and uses
of these statistics rather than on the actual process of collecting them. Viles
[1994] and Viles and French [1995] discuss maintenance of global statistics
in a distributed text index, specifically addressing the challenges that arise
from incremental updates. Their work is complementary to our strategies for
gathering statistics during index construction.

Global statistics are also important in meta-search environments [Lawrence
and Giles 1998; Craswell et al. 1999; Gravano et al. 1997], where ranked re-
sults from several (possibly autonomous) search servers must be merged to
produce a global ranking. For such environments, as an alternative to accurate
global statistics, Craswell et al. [1999] suggest the use of “reference statistics”—
estimates of the true statistics derived from sampling, or from the statistics of
a different document collection. The use of reference statistics, however, was
recommended mainly for systems in which collection of accurate statistics was
not feasible or was extremely expensive (for instance, when merging results
from autonomous search services). In our system, collection of accurate statis-
tics is feasible since all the individual query servers and indexers are under
our control.

A great deal of work has been done on several other issues rele-
vant to inverted-index based information retrieval, that has not been dis-
cussed in this paper. Such issues include index compression [Moffat and
Bell 1995; Anh and Moffat 1998; Witten et al. 1999], incremental up-
dates [Brown et al. 1994; Jeong and Omiecinski 1995; Tomasic et al. 1994;
Witten et al. 1999; Zobel et al. 1992], and distributed query performance
[Tomasic and Garcia-Molina 1993a; Tomasic and Garcia-Molina 1993b].

7. CONCLUSIONS

In this paper we addressed the problem of efficiently constructing inverted
indexes over large collections of Web pages. We proposed a new pipelining tech-
nique to speed up index construction and demonstrated how to identify the

13Note that all the leaf nodes of the B-tree are also sequentially linked into a list as part of the
B-tree implementation.
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right buffer sizes for maximum performance. We showed that for large collec-
tion sizes, the pipelining technique can speed up index construction by several
hours. We proposed and compared different schemes for storing and manag-
ing inverted files using an embedded database system. We showed that an
intelligent scheme for packing inverted lists in the storage structures of the
database can provide performance and storage efficiency comparable to tailored
inverted file implementations. Finally, we identified the key characteristics of
methods for efficiently collecting global statistics from distributed inverted in-
dexes. We proposed two such methods and compared and analyzed the tradeoffs
between them.

In the future, we intend to extend our testbed to incorporate distributed
query processing and explore algorithms and caching strategies for efficiently
executing queries. We also intend to experiment with indexing and querying
over larger collections and integration of our text-indexing system with indexes
on the link structure of the Web.

APPENDIX

A. PROOF OF OPTIMALITY OF EQUISIZE BUFFERS

We are given Tp = max{∑N
i=1 li,

∑N
i=1 pi,

∑N
i=1 fi}. If loading or flushing is the

bottleneck, Tp is either λBtotal or ϕBtotal , and has the same value for all distribu-
tions of Bi including an equisize distribution. If processing is the critical phase,
Tp =

∑N
i=1 (δBi +

∑
Bi log Bi). Under the constraint that

∑N
i=1 Bi = Btotal , the

absolute minimum of Tp is reached when Bi = Btotal
N for each i, i.e., when all

buffers have equal sizes. This global extremum can be easily determined using
standard analysis techniques such as Lagrange multipliers.
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