
Spanner's SQL Evolution
Data@Scale 2017, Seattle

Sergey Melnik
melnik@google.com

Spanner's SQL Evolution, Data@Scale 2017

What is Spanner
● Distributed transactional data management system
● Globally replicated, highly-available managed service
● Backs hundreds of mission-critical services at Google

○ AdWords, Google Play, Photos, etc.
○ 10s of millions QPS, 100s of petabytes, 5,000+ databases

● Publicly available on Google Cloud Platform (subset):
http://cloud.google.com/spanner

● Builds on OSDI'12 paper
○ ACID transactions, replication, fault-tolerance

● This talk: making Spanner a SQL DBMS (SIGMOD'17)
2

http://cloud.google.com/spanner
http://cloud.google.com/spanner

Spanner's SQL Evolution, Data@Scale 2017

Agenda
● Background
● SQL interface
● Distributed query processing
● Lessons learned

Also in SIGMOD'17:
● Blockwise-columnar storage

3

Spanner's SQL Evolution, Data@Scale 2017

Background

Spanner's SQL Evolution, Data@Scale 2017

Logical data model
CREATE TABLE Singers (
 SingerId INT64 NOT NULL,
 SingerName STRING(MAX)
) PRIMARY KEY(SingerId);

CREATE TABLE Albums (
 SingerId INT64 NOT NULL,
 AlbumId INT64 NOT NULL,
 AlbumTitle STRING(MAX),
) PRIMARY KEY(SingerId, AlbumId),
 INTERLEAVE IN Singers;

SingerId SingerName

1 Beatles

2 U2

3 Pink Floyd

SingerId AlbumId AlbumTitle

1 1 Help!

1 2 Abbey Road

3 1 The Wall

5

Spanner's SQL Evolution, Data@Scale 2017

Shard 1: SingerId ∈ (-INF, 3)

Database sharding
1 Beatles

1 1 Help!

1 2 Abbey Road

2 U2

 Shard 2: SingerId ∈ [3, +INF)

3 Pink Floyd

3 1 The Wall

6

● Shard: horizontal slice of
database, key-range
partitioned

● Rows that agree on
SingerId are co-located

● Can be physically
interleaved

Spanner's SQL Evolution, Data@Scale 2017

Cluster 1 Cluster 2 Cluster 3

Shard replication

● Replication uses Paxos
● Sync and async replication protocols
● Leaders responsible for writes
● Non-leaders serve reads, may be behind

Shard 1

Shard 2

Shard 1 Shard 1

Shard 2 Shard 2

7

Leader

Non-leader

Spanner's SQL Evolution, Data@Scale 2017

Replica placement

8

Example: geo-replication of a mission-critical database

Spanner's SQL Evolution, Data@Scale 2017

Transactions
● Pessimistic locking + timestamp versioning (MVCC)
● Externally consistent: respect wall-time order

○ Every Tx occurs at a timestamp T
○ Via atomic and GPS clocks

● Snapshot transactions: non-blocking
○ See consistent state of entire database at some timestamp T
○ Strong reads: effects of all Tx committed up to now
○ Stale reads: pick T in bounded past

● Read-Write transactions
○ All writes are buffered and committed at end of Tx
○ 2PL within a Paxos group, 2PC across groups
○ Tx use write-ahead redo log

9

details in OSDI'12

Spanner's SQL Evolution, Data@Scale 2017

SQL interface

Spanner's SQL Evolution, Data@Scale 2017

Common SQL dialect
● Standards-compliant
● Type system aligned with programming languages

○ INT64, FLOAT, STRING (UTF8), TIMESTAMP (nanoseconds)
○ Reduces impedance mismatch

● First-class support for nested data
○ ARRAY and STRUCT types
○ Protocol Buffers: schematized binary objects (currently internal only)

● Significant language design work across teams
● Shared with other Google systems: BigQuery/Dremel, F1

(Ads), etc.
11

Spanner's SQL Evolution, Data@Scale 2017

Sample query: name & titles
SELECT s.SingerName,
 ARRAY(SELECT a.AlbumTitle
 FROM Albums a
 WHERE a.SingerId = s.SingerId) titles
FROM Singers s
WHERE s.SingerId BETWEEN 1 AND 5

● Easier to use than outer joins or
multiple roundtrips

SingerName STRING titles ARRAY<STRING>

Beatles [Help!, Abbey Road]

U2 []

Pink Floyd [The Wall]

12

Compliance Suite

Same query semantics across systems

SQL AST Resolved
AST

Reference
 Impl.

Spanner

BigQuery

F1

Query Root

Optimizer

Distributed
Execution

Server
Execution

Library
Local

Execution

Input

Shared

Engine

Test
Driver

Random
Queries

Test
Queries

13

. . .

Spanner's SQL Evolution, Data@Scale 2017

Distributed Execution

Spanner's SQL Evolution, Data@Scale 2017

Distributed query execution
● Tightly coupled architecture

○ Query processor inside the database server
○ Typical design for standalone DBMSes (vs. distributed systems)

● Challenge of scale: data never sits still
○ Continuous resharding (due to load, capacity, config changes, ...)
○ Shard boundaries may change while query is running
○ Shards may become temporarily unavailable during query execution
○ Alternative replicas: near/far, loaded/idle, caught-up/behind

● Mechanisms used in Spanner
○ Query routing: key-range rpcs + range extraction
○ Parallelizing execution: partition work by shards, push it down
○ Dealing with failures: restartable query processing

15

Spanner's SQL Evolution, Data@Scale 2017

Query routing: key-range rpcs
● Routes requests to row ranges

○ E.g., WHERE SingerId BETWEEN @low AND @high
● Hides complexity of locating data
● Finds nearest, sufficiently up-to-date replica for given

concurrency mode
● Retries automatically

○ Unavailability, data movement, schema updates, ...
● Clients cache sharding information
● Clients cache "location hints" for queries

○ Send query to right server without extra hops or query analysis
○ E.g., Singers/SingerId[@low]

16

Spanner's SQL Evolution, Data@Scale 2017

Query routing: range extraction
SELECT * FROM Albums
WHERE (SingerId = 1 AND AlbumId >= 10) OR
 (SingerId IN (2,3) AND AlbumId != 0)

● Also used for restricting scan ranges
● Computed at runtime

○ May access data
● Uses efficient data structure

○ Filter tree (in the paper)

17

SingerId AlbumId

[1..1] [10, +INF)

[2..2] (-INF, 0)

[2..2] (0, +INF)

[3..3] (-INF, 0)

[3..3] (0, +INF)

Spanner's SQL Evolution, Data@Scale 2017

Parallelizing Execution

Spanner's SQL Evolution, Data@Scale 2017

Parallelizing execution

19

SELECT SingerName, ARRAY(SELECT ...) titles
FROM Singers WHERE SingerId BETWEEN 1 AND 5

Client

Shard 2Shard 1
SingerId ∈ (-INF, 3) SingerId ∈ [3, +INF)

● Assume fixed shard boundaries for now

Spanner's SQL Evolution, Data@Scale 2017

Initial logical plan

Scan
s: Singers

Array subquery
titles: {a.AlbumTitle}

Compute
s.SingerName, titles

Filter
a.SingerId = s.SingerId

Scan
a: Albums

20

Filter
1 ≤ s.SingerId ≤ 5

Spanner's SQL Evolution, Data@Scale 2017

Distributed union operator

Scan
s: ∆Singers

Array subquery
titles: {a.AlbumTitle}

Compute
s.SingerName, titles

Filter
a.SingerId = s.SingerId

Scan
a: ∆Albums

21

Filter
1 ≤ s.SingerId ≤ 5

Distributed union
Singers: ALL

Distributed union
Albums: ALL

server
boundary

Spanner's SQL Evolution, Data@Scale 2017

Push work to shards, extract distribution ranges

Scan
s: ∆Singers

Array subquery
titles: {a.AlbumTitle}

Compute
s.SingerName, titles

Filter
a.SingerId = s.SingerId

Scan
a: ∆Albums

22

Filter
1 ≤ s.SingerId ≤ 5

Distributed union
Singers: SingerId ∈ [1, 5]

Distributed union
Albums: SingerId = s.SingerId

Spanner's SQL Evolution, Data@Scale 2017

Exploiting co-location

Scan
s: ∆Singers

Array subquery
titles: {a.AlbumTitle}

Compute
s.SingerName, titles

Filter
a.SingerId = s.SingerId

Scan
a: ∆Albums

23

Filter
1 ≤ s.SingerId ≤ 5

Distributed union
Singers: SingerId ∈ [1, 5]

Spanner's SQL Evolution, Data@Scale 2017

Parallel-consumer API

24

Client

Worker Worker

Shard 2Shard 1
SingerId ∈ (-INF, 3) SingerId ∈ [3, +INF)

(-INF, 4) [4, +INF)

● Root-partitionable query:
Q(Union of ∆T) = Union of Q(∆T)

● Same result up to order of rows
● Another main distribution

operator: Distributed Cross
Apply

SELECT SingerName, ARRAY(SELECT ...) titles
FROM Singers WHERE SingerId BETWEEN 1 AND 5

Spanner's SQL Evolution, Data@Scale 2017

Restartable snapshot
queries

Spanner's SQL Evolution, Data@Scale 2017

Query restarts: overview
● Automatic compensation for failures
● For snapshot queries only
● Server yields "restart token" with each result batch
● Client resumes query execution after consuming partial results
● Contract: omit previously returned rows

○ No repeatability guarantee for subsequent rows

26

SingerName STRING titles ARRAY<STRING>

Beatles [Help!, Abbey Road]

U2 []

Pink Floyd [The Wall]

restart

Spanner's SQL Evolution, Data@Scale 2017

Query restarts: implementation challenges
● Naive solutions don't work well for "large" queries

○ Buffer final result, persist intermediate results, count rows, etc.
● Instead: efficiently capture distributed state of query

execution
● Dynamic resharding

○ May restart on different row range
● Non-determinism

○ Memory size, parallelism, computer architecture, numerics, ...
● Restarts across server versions

○ Query plans, execution algorithms

27

Spanner's SQL Evolution, Data@Scale 2017

Query restarts: hard but worth it
● Hide transient failures
● No retry loops: simpler programming model
● Streaming pagination
● Ensure forward progress for important class of long-running

queries
● Improve tail latency of online requests
● Low-impact rolling server upgrades

28

Spanner's SQL Evolution, Data@Scale 2017

Lessons learned

Spanner's SQL Evolution, Data@Scale 2017

Rethinking DBMS architecture for scale
● Runs exclusively as a service

○ Huge economy of scale in centralizing & automating human load
○ Must never regress (query optimization is hard)

● Dynamic sharding
○ Essential for elasticity

● Requests to data ranges, not servers
○ Automatic replica selection

● Shard-level isolation
○ Without affecting workloads on other data in same table

● Restartable snapshot queries
○ Robustness & forward progress in presence of failures

30

Spanner's SQL Evolution, Data@Scale 2017

System layering

31

F1 (SIGMOD'12)
Loosely coupled
SQL DBMS

Transactional NoSQL core

Spanner
Tightly coupled
SQL DBMS

● Horizontal scalability
○ Web-scale systems

● Manageability
○ Transparent failover
○ Easy resharding
○ Control plane

● ACID transactions
○ Across arbitrary rows

● Relational model
● Schemas
● SQL
● Indexes

Spanner's SQL Evolution, Data@Scale 2017

Lessons learned
● Both loosely & tightly coupled SQL designs work well

○ Deployed simultaneously on same transactional NoSQL core
● Transactions are hugely helpful for system internals

○ Schema versioning, data movement/resharding, online index creation,
backups, storage format changes, ...

● Relational model: better earlier than later
○ Well-known abstractions get developers on common page
○ Reduces cost of foreseeable future migration

● SQL vs. NoSQL dichotomy may no longer be relevant at
Google

32

Questions?

33

http://cloud.google.com/spanner

http://cloud.google.com/spanner
http://cloud.google.com/spanner

Spanner's SQL Evolution, Data@Scale 2017

Backup slides

Spanner's SQL Evolution, Data@Scale 2017

Doh... Just implement the SQL standard
● NIST abandoned compliance testing in 1996

○ Before then, Fed Govt would only buy compliant DBMSes
● SQL:1999 specs onward are broad, imprecise

○ No implementation requirement (unlike W3C)
● Spec'ed features implemented differently by DBMSes

○ Many proprietary extensions

http://www.tdan.com/view-articles/4923/
Is SQL a real standard anymore?
by M. M. Gorman, ANSI/SQL committee secretary

Bottom line: substantial language design work

http://www.tdan.com/view-articles/4923/
http://www.tdan.com/view-articles/4923/

Spanner's SQL Evolution, Data@Scale 2017

Blockwise-columnar
storage

Spanner's SQL Evolution, Data@Scale 2017

Persistent storage
● Log-structured merge tree:

● Original layer format: SSTables (from Bigtable)
○ Optimized for schema-less key/value pairs

● Improved format: Ressi (mid 2017)
○ Essentially, PAX layout (Ailamaki et al 2002)
○ For schematized data & hybrid OLTP/OLAP workloads

37

RAMMemory layer

File layers Colossus

Spanner's SQL Evolution, Data@Scale 2017

SSTables vs. Ressi
CREATE TABLE Singers (
 SingerId INT64 NOT NULL,
 SingerName STRING(MAX),
 URL STRING(MAX)
) PRIMARY KEY(SingerId);

URL

thebeatles.com

u2.com

pinkfloyd.com

38

Key Ts Value

1 Beatles

1 beatles.com

1 thebeatles.com

2 U2

2 u2.com

3 Pink Floyd

3 pinkfloyd.com

SingerId

1

2

3

SingerName

Beatles

U2

Pink Floyd

URL

beatles.com

● Columnar within blocks
● Old versions & large values

stored separately:

Spanner's SQL Evolution, Data@Scale 2017

Challenges
● Query optimization: never regress
● Transaction: read uncommitted results in active Tx

○ Essential for SQL DML
● Physical design

○ Wrong choices can kill performance
● Versatility

○ OLTP, OLAP, full-text, JSON, etc.

39

