Google

afAER

Spanner's SQL Evolution
Data@Scale 2017, Seattle

Sergey Melnik

melnik@google.com

Google

What is Spanner

Distributed transactional data management system
Globally replicated, highly-available managed service

Backs hundreds of mission-critical services at Google

o AdWords, Google Play, Photos, etc.
o 10s of millions QPS, 100s of petabytes, 5,000+ databases

Publicly available on Google Cloud Platform (subset):
http://cloud.google.com/spanner

Builds on OSDI'12 paper

o ACID transactions, replication, fault-tolerance

This talk: making Spanner a SQL DBMS (SIGMOD'17)

http://cloud.google.com/spanner
http://cloud.google.com/spanner

Google

Agenda

Background

SQL interface

Distributed query processing
Lessons learned

Also in SIGMOD'7:
e Blockwise-columnar storage

Spanner's SQL Evolution, Data@Scale 2017 3

Google Background

Google

Logical data model

CREATE TABLE Singers (
SingerId INT64 NOT NULL,
SingerName STRING(MAX)

) PRIMARY KEY(SingerId);

CREATE TABLE Albums (
SingerId INT64 NOT NULL,
AlbumId INT64 NOT NULL,
AlbumTitle STRING(MAX),

) PRIMARY KEY(SingerId, AlbumId),
INTERLEAVE IN Singers;

Singerld SingerName

1 Beatles

2 u2

3 Pink Floyd

Singerld Albumld AlbumTitle
1 1 Help!

1 2 Abbey Road

3

1

The Wall

Google

Database sharding

- m mm mm Em Em mm mm mm mm mm mm Em Em Em Em Em Em mm mm Em mm Em

e Shard: horizontal slice of Nk Beatles
database, key-range N 1 Help!
partitioned L 2 Abbey Road
e Rows that agree on L2 vz
SingerId are co-located . Shard1: Singerld € (-INF, 3)
o _Can be physically iy
interleaved K Pink Floyd
: 3 1 The Wall
I
|

Shard 2: Singerld € [3, +INF)

T o o o o e e e e e e e e e e e R e e e R e e e e

LU UL U ———

[S ———

Google

Shard repllcatlon

———————————

Cluster 1

N
N

———————————

Cluster 2

| Shard 1

~————-———————’

l
|
|
I
1
|
|
1
1
|
|
I
\

———————————

Replication uses Paxos

Sync and async replication protocols
Leaders responsible for writes

L R o T

[SR S R —

Leader
Non-leader

Non-leaders serve reads, may be behind

Spanner's SQL Evolution, Data@Scale 2017

7

Google

Replica placement

e

Map Satellite b
- 3 |
' 4 i
- £ . i Ll .
A, 7
’ L

Map data ©2017 | Terms of Use

Example: geo-replication of a mission-critical database

Spanner's SQL Evolution, Data@Scale 2017

Google

Transactions details in OSDI'12

e Pessimistic locking + timestamp versioning (MVCC)

e Externally consistent: respect wall-time order
o Every Tx occurs at atimestamp T
o Via atomic and GPS clocks

e Snapshot transactions: non-blocking
o See consistent state of entire database at some timestamp T
o Strong reads: effects of all Tx committed up to now
o Stale reads: pick T in bounded past

e Read-Write transactions
o All writes are buffered and committed at end of Tx
o 2PL within a Paxos group, 2PC across groups
o Tx use write-ahead redo log

Google SQL interface

Google

Common SQL dialect

Standards-compliant

Type system aligned with programming languages
o INT64, FLOAT, STRING (UTF8), TIMESTAMP (nanoseconds)
o Reduces impedance mismatch

First-class support for nested data
o ARRAY and STRUCT types
o Protocol Buffers: schematized binary objects (currently internal only)

Significant language design work across teams
Shared with other Google systems: BigQuery/Dremel, F1
(Ads), etc.

11

Google

Sample query: name & titles

SELECT s.SingerName,
ARRAY (SELECT a.AlbumTitle
FROM Albums a

WHERE a.SingerId = s.SingerlId) titles

FROM Singers s
WHERE s.SingerId BETWEEN 1 AND 5

SingerName STRING

titles ARRAY<STRING>

e [Easier to use than outer joins or

Beatles

[Help!, Abbey Road]

multiple roundtrips

u2

[]

Pink Floyd

[The Wall]

12

Google

Spanner

BigQuery

Input
Shared
Engine
SQL (> AST f»f ROROVEC
)= \
| Test Test :
| Driver Queries I
|
| | Reference Random |
| Impl. Queries | |
|
|
)

Compliance Suite

F1

Query Root

Optimizer

Distributed |

Execution

v

Server

[

Execution
Library

)

[

Local
Execution

)

e e o o o o o o -

13

Google Distributed Execution

Google

Distributed query execution

e Tightly coupled architecture
o Query processor inside the database server
o Typical design for standalone DBMSes (vs. distributed systems)

e Challenge of scale: data never sits still
o Continuous resharding (due to load, capacity, config changes, ...)
o Shard boundaries may change while query is running
o Shards may become temporarily unavailable during query execution
o Alternative replicas: near/far, loaded/idle, caught-up/behind
e Mechanisms used in Spanner
o Query routing: key-range rpcs + range extraction
o Parallelizing execution: partition work by shards, push it down
o Dealing with failures: restartable query processing

15

Google

Query routing: key-range rpcs

Routes requests to row ranges
o E.g., WHERE SingerId BETWEEN @low AND @high

Hides complexity of locating data
Finds nearest, sufficiently up-to-date replica for given
concurrency mode

Retries automatically

o Unavailability, data movement, schema updates, ...
Clients cache sharding information

Clients cache "location hints" for queries

o Send query to right server without extra hops or query analysis
o E.g., Singers/SingerId[@low]

16

Google

Query routing: range extraction

SELECT * FROM Albums

WHERE

(SingerId = 1 AND AlbumId >= 10) OR
(SingerId IN (2,3) AND AlbumId != 0)

e Also used for restricting scan ranges
e Computed at runtime

©)

May access data

e Uses efficient data structure

©)

Filter tree (in the paper)

Singerid
[1..1]
[2..2]
[2..2]
[3..3]
[3..3]

Albumid
[10, +INF)
(-INF, 0)
(0, +INF)
(-INF, 0)
(0, +INF)

17

Google Parallelizing Execution

Google

Parallelizing execution

SELECT SingerName, ARRAY(SELECT ...) titles
FROM Singers WHERE SingerId BETWEEN 1 AND 5

Client

Singerld € (-INF, 3) Singerld € [3, +INF)

e Assume fixed shard boundaries for now

19

Google

Initial logical plan

Compute
s.SingerName, titles

Array subquery
titles: {a.AlbumTitle}

Filter
1 <s.Singerld <5

Filter
a.Singerld = s.Singerld

Scan
s: Singers

Scan
a: Albums

Spanner's SQL Evolution, Data@Scale 2017

Google

Distributed union operator

——

o T o mm = e e e e e

———

Compute
s.SingerName, titles

Filter
1 <s.Singerld <5

Scan
s: ASingers

server

/ boundary

Array subquery

titles: {a.AlbumTitle}
|

Filter
a.Singerld = s.Singerld

Scan
a: AAlbums

Spanner's SQL Evolution, Data@Scale 2017

21

Google

Push work to shards,

o e o o o o —

o o —

extract distribution ranges

Compute
s.SingerName, titles

Array subquery
titles: {a.AlbumTitle}

Filter

1 <s.Singerld <5

Scan
s: ASingers

—— o -

—-——

o T mm = —

Filter
a.Singerld = s.Singerld

Scan
a: AAlbums

Spanner's SQL Evolution, Data@Scale 2017

N o e e e e e e o o e

—— e = = o m—

22

Google

Epr0|t|ng co-location

o T e

Distributed union :
Singers: Singerld € [1, 5] :

— e o o e e o s o fem e o o e o o o = o= e

o T Em === o e e e e e e e e M M e M M M e R M M e Rmm M M R Mmm M e e e

Compute

Filter
1< s.SianerId <5

Scan
s: ASingers

S e e o e e e e M mm M M M e Mm Mmm M e Mmm Mmm M M Mmm Mmm M M M Mmm M M Mmm M M M m M M e e

Array subquery
titles: {a.AlbumTitle}

Filter

a.Singerld T s.Singerld

Scan
a: AAlbums

23

Google

Parallel-consumer API

SELECT SingerName, ARRAY(SELECT ...) titles
FROM Singers WHERE SingerId BETWEEN 1 AND 5

e Root-partitionable query: _
Q(Union of AT) = Union of Q(AT) Client
(INF, 4) .77 [4, +INF)

e Same result up to order of rows x
Worker Worker

e Another main distribution
operator: Distributed Cross %%
Appl
PPy Shard 1 Shard 2

Singerld € (-INF, 3) Singerld € [3, +INF)

24

Restartable snapshot

Google _
queries

Google

Query restarts: overview

Automatic compensation for failures
For snapshot queries only
Server yields "restart token" with each result batch

Client resumes query execution after consuming partial results

Contract: omit previously returned rows
o No repeatability guarantee for subsequent rows

SingerName STRING

titles ARRAY<STRING>

Beatles

[Help!, Abbey Road]

U2

[]

Pink Floyd

[The Wall]

/ restart

26

Google

Query restarts: implementation challenges

Naive solutions don't work well for "large" queries
o Buffer final result, persist intermediate results, count rows, etc.

Instead: efficiently capture distributed state of query
execution

Dynamic resharding

o May restart on different row range

Non-determinism

o Memory size, parallelism, computer architecture, numerics, ...

Restarts across server versions
o Query plans, execution algorithms

27

Google

Query restarts: hard but worth it

Hide transient failures

No retry loops: simpler programming model

Streaming pagination

Ensure forward progress for important class of long-running
queries

Improve tail latency of online requests

Low-impact rolling server upgrades

28

Google Lessons learned

Google
Rethinking DBMS architecture for scale

e Runs exclusively as a service
o Huge economy of scale in centralizing & automating human load
o Must never regress (query optimization is hard)

e Dynamic sharding
o Essential for elasticity
e Requests to data ranges, not servers
o Automatic replica selection
e Shard-level isolation
o Without affecting workloads on other data in same table

e Restartable snapshot queries
o Robustness & forward progress in presence of failures

30

Google

System layering

F1 (SIGMOD'12)
Loosely coupled
SQL DBMS

Spanner
Tightly coupled
SQL DBMS

Transactional NoSQL core

e Relational model

e Schemas

e SQL

e [ndexes

e Horizontal scalability
o Web-scale systems

e Manageability

o Transparent failover
o Easy resharding
o Control plane

ACID transactions
o Across arbitrary rows

31

Google

Lessons learned

Both loosely & tightly coupled SQL designs work well

o Deployed simultaneously on same transactional NoSQL core

Transactions are hugely helpful for system internals
o Schema versioning, data movement/resharding, online index creation,
backups, storage format changes, ...

Relational model: better earlier than later
o Well-known abstractions get developers on common page
o Reduces cost of foreseeable future migration

SQL vs. NoSQL dichotomy may no longer be relevant at
Google

32

Google

Questions?

http://cloud.google.com/spanner

33

http://cloud.google.com/spanner
http://cloud.google.com/spanner

Google Backup slides

Google
Doh... Just implement the SQL standard

e NIST abandoned compliance testing in 1996

o Before then, Fed Govt would only buy compliant DBMSes
e SQL:1999 specs onward are broad, imprecise

o No implementation requirement (unlike W3C)
e Spec'ed features implemented differently by DBMSes

o Many proprietary extensions

http://www.tdan.com/view-articles/4923/
Is SQL a real standard anymore?
by M. M. Gorman, ANSI/SQL committee secretary

Bottom line: substantial language design work

http://www.tdan.com/view-articles/4923/
http://www.tdan.com/view-articles/4923/

Blockwise-columnar

Google
storage

Google

Persistent storage

e Log-structured merge tree:

Memory layer

RAM

File layers

Colossus

e COiriginal layer format: SSTables (from Bigtable)

o Optimized for schema-less key/value pairs
Improved format: Ressi (mid 2017)

o Essentially, PAX layout (Ailamaki et al 2002)

o For schematized data & hybrid OLTP/OLAP workloads

Spanner's SQL Evolution, Data@Scale 2017

37

Google

SSTables vs. Ressi

CREATE TABLE Singers (

SingerId INT64 NOT NULL,

SingerName STRING(MAX),

URL STRING(MAX)

) PRIMARY KEY(SingerId);

Singerld URL SingerName
1 thebeatles.com Beatles

2 u2.com u2

3 pinkfloyd.com Pink Floyd

Key Ts | Value

1 Beatles

1 beatles.com

1 thebeatles.com
2 u2

2 u2.com

3 Pink Floyd

3 pinkfloyd.com

e Columnar within blocks
e Old versions & large values

stored separately:

URL

beatles.com

38

Google

Challenges

e Query optimization: never regress

e T[ransaction: read uncommitted results in active Tx
o Essential for SQL DML

e Physical design

o Wrong choices can kill performance

o Versatility
o OLTP, OLAP, full-text, JSON, etc.

